Skip to main content
Log in

Calcareous nannofossils from late Jurassic sediments of the Volga Basin (Russian Platform): evidence for productivity-controlled black shale deposition

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Jurassic/Cretaceous boundary interval in the northern hemisphere is characterized by the widespread occurrence of black shales. About 60% of all petroleum source rocks comprise sediments of late Jurassic and early Cretaceous age with the origin of such black shales still under discussion. In order to better understand the factors that controlled black shale sedimentation, 78 samples were analyzed for calcareous nannofossils from two sections (Gorodische, Kashpir) of the Volga Basin (NE Russia). Calcareous nannofossils are ideal proxies for deciphering nutrient, temperature and salinity fluctuations. Additionally 58 samples from both sections were also analyzed for clay mineralogy, δ13Corg , TOC and CaCO3 composition. Both sections contain calcareous claystones and intercalated organic rich shales overlain by phosphorite beds. The presence of the calcareous nannofossil species Stephanolithion atmetros throughout both successions allows a biostratigraphic assignment to the S. atmetros Nannofossil Biozone (NJ 17), which corresponds to the Dorsoplanites panderi Ammonite Biozone of the Middle Volgian. The marlstones of the Kashpir section yield a well-preserved rich and diverse nannoflora, whereas all black shale beds are essentially barren of calcareous nannofossils. Only the uppermost black shale layers yield an impoverished assemblage of low diversity and abundance. Geochemical data suggest an early diagenetic nannofossil dissolution in the black shales of the Kashpir section. This is supported by the occurrence of coccoliths in black shale horizons of the Gorodische section. The assemblages in both sections are dominated by coccoliths of the Watznaueriaceae group (Watznaueria barnesae, Watznaueria fossacincta, Watznaueria britannica, Watznaueria communis), Biscutum constans and Zeugrhabdotus erectus. In Kashpir rare specimens of Crucibiscutum salebrosum occur in the higher part of the section. These taxa indicate boreal affinities. B. constans and Z. erectus are considered to be taxa indicative of a higher productive environment, while C. salebrosum is a cool-water species. From base to top of the Kashpir section, consecutive mass occurrences of different taxa/groups were observed: W. barnesae–W. fossacincta acme, W. britannica–W. communis acme, Z. erectus acme, B. constans acme (including sparse occurrences of C. salebrosum).

The observed distribution patterns have been interpreted as characterizing a transition from a low productive, oligotrophic setting with high abundances of K-selected cosmopolitan species (Watznaueriaceae) and predominating marlstone sedimentation to a higher productive, mesotrophic setting. Cooler water temperatures marked by r-selection and acmes of opportunistic species (Z. erectus, B. constans) are coincident with the deposition of black shales and phosphorites in the higher part of the section. Interpretation of clay mineral distribution indicates that black shale deposition occurred under semi-arid hinterland climatic conditions concomitant with a sea level rise. This induced dysoxic conditions in the deeper parts of the Volga Basin, favoring the preservation of organic matter. The cause of the nutrient enrichment in the surface water is still unclear, but possible river water input from the continents does not seem to have been the controlling factor under a semi-arid climate. The occurrence of phosphorites in the upper part of both sections presumably indicates that enhanced productivity may be better explained by the upwelling of nutrient-rich bottom water and thereby causing the recycling of nutrients from oxidized phytoplankton back into the photic zone. This recycling effect finally may have led to an intensified phytoplankton growth which seemed to be a sufficient source for the enrichment of organic matter. This is well correlated with the increase in black shale horizons in the upper part of the Kashpir section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1. a
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  • Baraboshkin EJ (1999) Berriasian–Valanginian (Early Cretaceous) seaways of the Russian Platform Basin and the problem of Boreal/Tethyan correlation. Geol Carpathica 50(1):5–20.

    Google Scholar 

  • Bersezio R, Erba E, Gorza M, Riva A (2002) Berriasian–Aptian black shales of the Maiolica formation (Lombardian Basin, Southern Alps, northern Italy): local to global events. Palaeogeogr Palaeoclimatogr Palaeoecol 180:253–275

    Article  Google Scholar 

  • Bischoff G, Mutterlose J (1998) Calcareous nannofossils of the Barremian/Aptian boundary interval in NW Europe: biostratigraphic and palaeoecologic implications of a high resolution study. Cretaceous Res 19:635–661.

    Article  Google Scholar 

  • Bown P (1998) Calcareous nannofossil biostratigraphy. Chapman and Hall, Cambridge, 314 pp

  • Brand LE (1994) Physiological ecology of marine coccolithophores. In: Winter A, Siesser WG (eds) Coccolithophores, Cambridge University Press, Cambridge, pp 39–50

  • Chamley H, Bebrabant P, Chandillier AM, Foulon J (1983) Clay mineralogy and inorganic geochemical stratigraphy of Blake–Bahama Basin since the Callovian, Site 534, Deep Sea Drilling Project Leg. 76. Initial Reports of the Deep Sea Drilling Project 76, US Government Printing Office, Washington, DC, pp 437–451

  • Coccioni R, Erba E, and Premoli-Silva I (1992) Barremian–Aptian calcareous plankton biostratigraphy from the Gorgo Cerbara section (Marche, central Italy) and implications for plankton evolution. Cretaceous Res 13:517–537

    Google Scholar 

  • Cooper MKE (1987) New calcareous nannofossil taxa from the Volgian Stage (Upper Jurassic) lectostratotype site at Gorodishche, U.S.S.R. Neues Jahrb Geol Paläontol Monatsh 10:606–612

    Google Scholar 

  • Curtis CD (1980) Diagenetic alteration in black shales. J Geol Soc Lond 137:189–194

    CAS  Google Scholar 

  • Daoudi L, Deconinck JF (1994) Contrôles paléogéographique et diagénétique des successions sédimentaires argileuses du Bassin Atlasique au Crétacé (Haut-Atlas Occidental, Maroc.). J Afri Earth Sci 18:123–141

    Article  Google Scholar 

  • Deconinck JF, Chamley H(1983) Héritage et diagenése des minéraux argileux dans les alternaces marno-calcaires du Crétacé inférieur du domaine subalpin. CR Acad Sci 297:589–594

    Google Scholar 

  • Deconinck JF, Beaudoin B, Chamley B, Joseph P, Raoult JF (1985) Contôles tectonique, eustatique et climatique de la sédimentation argileuse du domaine subalpin francais au Malm-Crétacé. Rev Géol Dynam Geogr Phys 26:311–320

    Google Scholar 

  • DoddJR, Stanton RJ (1990) Paleoecology—concepts and applications. Wiley, New York, 502 pp

  • Erba E (1987) Mid-Cretaceous cyclic pelagic facies from the Umbrian–Marchean Basin: What do calcareous nannofossils suggest? INA Newsl 9:52–53

    Google Scholar 

  • Erba E (1989) Upper Jurassic to Lower Cretaceous Nannoconus distribution in some sections from northern to central Italy. Mem Sci Geol 41:255–261

    Google Scholar 

  • Erba E (1992) Middle Cretaceous calcareous nannofossils from the western Pacific (Leg 129): evidence for paleoequatorial crossings. In: Larson RL, Lancelot Y, and 21 other editors (ed) Proceedings of the Ocean Drilling Program, scientific results 129, pp 189–201

  • Erba E, Castradori D, Guasti G, Ripepe M (1992) Calcareous nannofossils and Milankovitch cycles: the example of the Albian Gault Clay Formation (southern England). Palaeogeogr Palaeoclimatogr Palaeoecol 93:47–69

    Article  Google Scholar 

  • Eshet Y, Almogi-Labin A (1996) Calcareous nannofossils as palaeoproductivity indicators in Upper Cretaceous organic-rich sequences in Israel. Mar Micropalaeontol 26:37–61

    Article  Google Scholar 

  • Fisher, C. (1999) Calcareous nannofossils as indicators of mid-Cretaceous paleofertility along an ocean front, U.S. western interior. In: Barrera E, Johnson CC (eds) Evolution of the Cretaceous ocean–climate system. Geol Soc Am, Madison, Wisconsin, Special Paper 332, pp 161–180

  • Gardner WD, Hinga KR, Marra J.(1983) Observations on the degradation of biogenic material in the deep ocean with implications on accuracy of sediment trap fluxes. J Mar Res 38(1):17–39

    Google Scholar 

  • Gerasimov PA, Mikhailov NP (1966) Volgian stage and the geostratigraphical scale for the upper series of the Jurassic system. Izvest Akad Nauk SSSR, Seriya Geol 2:118–138

    Google Scholar 

  • Groecke DR (2002) The carbon isotope composition of ancient CO2 based on higher-plant organic matter. Philos Trans R Soc Lond B A 360:633–658

    Article  Google Scholar 

  • Groecke D, Price GD, Ruffell A, Mutterlose J (2003) Jurassic–Cretaceous palaeotemperatures compared from the Volga Basin (Russian Platform) and Kilhaua Harbour (New Zealand). Palaeoecol Palaeogeogr Palaeoclimatol (in press)

  • Hallam A, Grose JA, Ruffell AH (1991) Palaeoclimatic significance of changes in clay mineralogy across the Jurassic–Cretaceous boundary in England and France. Palaeogeogr Palaeoclimatogr Palaeoecol 81:173–187

    Article  Google Scholar 

  • Hantzpergue P, Baudin F, Mitta V, Olferiev A, Zakharov V (1998a) The Upper Jurassic of the Volga basin: ammonite biostratigraphy and correlations with standard European zonations. C RAcad Sci 326:633–640.

    Article  Google Scholar 

  • Hantzpergue P, Baudin F, Mitta V, Olferiev A, Zakharov V (1998b) The Upper Jurassic of the Volga basin: ammonite biostratigraphy and occurence of organic-carbon rich facies. Correlations between boreal–sobboreal and submediterranean provinces. In: Crasquin-Soleau S, Barrier E (Eds) Peri-Tethys Memoir 4: epicratonic basins of Peri-Tethyan platforms. Mémoires Du Muséum National D´Historique Naturelle, Paris. pp 9–33

  • Hasegawa T, Pratt LM, Maeda H, Shigeta Y, Okamoto T, Kase T, Uemura K (2003) Upper Cretaceous stable carbon isotope stratigraphy of terrestrial organic matter from Sakhalin, Russian Far East: a proxy for the isotopic composition of paleoatmospheric CO2. Palaeogeogr Palaeoclimatol Palaeoecol 189:97–115

    Article  Google Scholar 

  • Hofman P, Ricken W, Schwark L, Leythaeuser D (2000) Carbon–sulfur–iron relationships and δ13C of organic matter for late Albian sedimentary rocks from the north Atlantic Ocean: paleoceanographic implications. Palaeogeogr Palaeoclimatol Palaeoecol 163:97–113

    Article  Google Scholar 

  • Kennedy MJ (2002) Mineral surface control of organic carbon in black shale. Nature 295:657–660

    Article  CAS  Google Scholar 

  • Keupp H, Mutterlose J (1994) Calcareous phytoplankton from the Barremian/Aptian boundary interval from NW Germany. Cretaceous Res 15:739–763

    Article  Google Scholar 

  • Kuleva GV, Yanochskina ZA, Bukina TF (1996) Palaeoecosystem of Dorsoplanites panderi phase in the Volga shale-generating basin. Stratigr Geol Correlation 4:238–245

    Google Scholar 

  • Lees JA (2003) Calcareous nannofossil biogeography illustrates palaeoclimate change in the Late Cretaceous Indian Ocean. Cretaceous Res 23:537–634

    Article  Google Scholar 

  • McIntyre A (1967) Coccoliths as Paleoclimatic indicators of Pleistocene Glaciation. Science 158(3806):1314–1317

    Google Scholar 

  • McIntyre A, Allan WH, Roche MB (1970) Modern pacific coccolithophorida: a paleontological thermometer Trans N Y Acad Sci 32(6):720–731

    Google Scholar 

  • Melinte M, Mutterlose . (2001) A Valanginian (Early Cretaceous),Boreal nannoplankton excursion in sections from Romania. Mar Micropalaeontol 43:1–25

    Article  Google Scholar 

  • Mesezhnikov MS (eds) (1977) Jurassic/Cretaceous boundary beds in the Middle Volga area. Ministry of Geology of the USSR. VNIGRI, pp 1–33

  • Mutterlose J (1991) Das Verteilungs- und Migrationsmuster des kalkigen Nannoplanktons in der borealen Unter-Kreide (Valangin-Apt) NW-Deutschlands. Palaeontographica B221:27–152

    Google Scholar 

  • Mutterlose J (1996) Calcareous nannofossil palaeoceanography of the Early Cretaceous of NW Europe. MittGeol Staatsinst Hamburg 77:291–313

    Google Scholar 

  • Mutterlose J and Kessels K (2000) Early Cretaceous calcareous nannofossils from high latitudes: implications for palaeobiogeography and palaeoclimate. Palaeogeogr Palaeoclimatol Palaeoecol 160:347–372

    Article  Google Scholar 

  • Nadeau PH, Wilson MJ, Mchardy WJ, Tait JM (1985) The conversion of smectite to illite during diagenesis: evidence from some illitic clay from bentonites and sandstones Mineral Mag 49:393–400

    Google Scholar 

  • Nalivkin DV (1973) Geology of the USSR. University of Toronto Press, Toronto 855 pp

  • Newman JW, Parker PL, Behrens EW (1973) Organic carbon isotope ratios in Quaternary cores from the Gulf of Mexico. Geochim Cosmochim Acta 37:225–238

    CAS  Google Scholar 

  • Okada H, Honjo S (1973) The distribution of oceanic coccolithophorids in the Pacific. Deep Sea Res 20:619–641

    Google Scholar 

  • Perch-Nielsen K (1985) Mesozoic calcareous nannofossils. In: Bolli HM, Saunders JB, Perch-Nielsen K (eds) Plankton stratigraphy. Cambridge University Press, Cambridge pp 329–426

  • Pittet B, Mattioli E (2002) The carbonate signal and calcareous nannofossil distribution in an upper Jurassic section (Balingen-Tieringen, Late Oxfordian, southern Germany). Palaeogeogr Palaeoclimatol Palaeoecol 179:71–96

    Article  Google Scholar 

  • Premoli-Silva I, Erba E, Tornaghi ME (1989) Paleoenvironmental signals and changes in surface fertility in mid Cetaceous Corg.rich pelagic facies of the Fucoid Marls (central Italy). Géobois Mem Spéc 11:225–236

    Google Scholar 

  • Riboulleau A, Derenne S, Sarret G, Largeau C, Baudin F, Connan J (2000) Pyrolytic and spectroscopic study of a sulphur rich kerogen from the "Kashpir oil shales" (Upper Jurassic, Russian platform). Organic Geochem 0(2000):1–21

    Google Scholar 

  • Riboulleau A, Baudin F, Daux V, Hantzpergue P, Renard M, Zakharov V (1998) Évolution de la paléotempérature des eaux de la plate-forme russe au cours du Jurassique supérieur. C Rs Acad Sci 326:239–246

    Article  Google Scholar 

  • Roth PH (1986) Mesozoic palaeoceanography of the North Atlantic and the Tethys Oceans. In: Summerhayes CP, Shackelton NJ (eds) SEPM Special Publication 32, pp 517–546

  • Roth PH (1989) Ocean circulation and calcareous nannofossil evolution during the Jurassic and Cretaceous. Palaeogeogr Palaeoclimatol Palaeoecol 74:111–126

    Article  Google Scholar 

  • Roth PH, Bowdler JL (1981) Middle Cretaceous calcareous nannoplankton biogeography and paleoceanography of the Atlantic ocean. SEPM Special Publication 32, pp 517–546

  • Roth PH, Krumbach KR (1986) Middle Cretaceous calcareous nannofossil biogeography and preservation in the Atlantic and Indian Oceans: implications for paleoceanography. Mar Micropalaeontol 10:235–266

    Article  Google Scholar 

  • Ruehlemann C, Frank M, Hale W, Mangini A, Mulitza S, Müller PJ, Wefer G (1996) Late Quaternary productivity changes in the western equatorial Atlantic: evidence from 230Th-normalized carbonate and organic carbon accumulation rates. Mar Geol 135:127–152

    Article  Google Scholar 

  • Ruffell AH, Batten DJ (1990) The Barremian-Aptian arid phase in northern Europe. Palaeogeogr Palaeoclimatol Palaeoecol 80:197–212

    Article  Google Scholar 

  • Ruffell A, McKinley JM, Worden RH (2002a) Comparison of clay mineral stratigraphy to other proxy palaeoclimate indicators in the Mesozoic of NW Europe. Philos Trans R Soc Lond A 360:675–693

    Article  Google Scholar 

  • Ruffell AH, Price GD, MutterloseJ, Kessels K, Baraboshkin E, Grocke DR (2002b) Palaeoclimate indicators (clay minerals, calcareous nannofossils, stable isotopes) compared from two successions in the late Jurassic of the Volga Basin (SE Russia). Geol J 37:1–17

    Article  Google Scholar 

  • Sasonova, I.G. (1977) Die Ammoniten der Jura/Kreide-Grenzschichten der Russischen Plattform. Trudy VNIGRI 185:127 pp

    Google Scholar 

  • Sasonov, NT, Sasonova IG (eds) (1967) Palaeogeography of the Russian Platform in the Jurassic and Early Cretaceous. Nedra, 227 pp

  • Sellwood, BW, Price GD (1993) Sedimentary facies as indicators of Mesozoic palaeoclimate. Philos Trans R Soc Lond B341:225–233

    Google Scholar 

  • Shmur SI, Emets TP, Bartoshevich OV, Kornilina VE, Ermakova VI (1983) Shale bearing layers of the Volga basin. Lithol Mineral Resour 18:337–345

    Google Scholar 

  • Singer A (1984) The paleoclimatic interpretation of clay minerals in sediments. A review. Earth Sci Rev 21:251–293.

    Article  Google Scholar 

  • Street C Bown PR (2000) Palaeobiogeography of Early Cretaceous (Berriasian-Barremian) calcareous nannoplankton. Mar Micropaleontol 39:265–291

    Article  Google Scholar 

  • Thomsen E (1989) Seasonal variation in boreal Early Cretaceous calcareous nannofossils. Mar Micropalaeontol 15:123–152

    Article  Google Scholar 

  • Tucker M (1988) Techniques in Sedimentology, Blackwell, London, 394 pp

  • Van Kaam-Peter HME, Schouten S, Köster J, Sinnighe Damste JS (1998) Controls on the molecular and carbon isotopic composition of organic matter deposited in a Kimmeridgian euxinic shelf sea: evidence for preservation of carbohydrates through sulphurisation. Geochim Cosmochim Acta 62: 3259–3283.

    Article  Google Scholar 

  • Watkins DK (1989) Nannoplankton productivity fluctuations and rhythmically-bedded pelagic carbonates of the Greenhorn Limestone (Upper Cretaceous). Palaeogeogr Palaeoclimatol Palaeoecol 74:75–86

    Article  Google Scholar 

  • Wignall PB (1994) Black Shales. Clarendon Press, Oxford, 136 pp

  • Wignall PB, Ruffell AH (1990) The influence of a sudden climatic-change on marine deposition in the Kimmeridgian of northwest Europe. J Geol Soc Lond 147:365–371

    Google Scholar 

  • Williams JR, Bralower TJ (1995) Nannofossil assemblages, fine fraction stable isotopes, and the paleoceanography of the Valanginian-Barremian (Early Cretaceous) North Sea Basin. Paleoceanography 10(4):815–839

    Google Scholar 

  • Young JR, Bown PR (1991) An ontogenetic sequence of coccoliths from the Late Jurassic Kimmeridge Clay of England. Palaeontology 34:843–850

    Google Scholar 

Download references

Acknowledgements

Financial support by the Deutsche Forschungsgemeinschaft (Mu 667/19-1) is gratefully acknowledged. Stable isotopes were kindly measured by Dr. B. Donner (Institut für Geowissenschaften, University of Bremen). Alastair Ruffell was supported by a Royal Society travel grant. We are indebted to Evgenij Baraboshkin, Richard Marcinowski and Gregory Price for their help with fieldwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Kessels.

Appendix

Appendix

List of calcareous nannofossils taxa with author attributions and dates

  • Axopodorhabdus Wind & Wise in Wise 1977

  • A .cylindratus Noël 1965

  • Biscutum Black in Black and Barnes 1959

  • B. constans (Górka 1957) Black in Black and Barnes 1959

  • Chiastozygus Gartner 1968

  • C. leptostaurus Cooper 1987

  • Cretarhabdus Bramlette & Martini 1964

  • C. conicus Bramlette & Martini 1964

  • Crucibiscutum Jakubowsky 1986

  • C. salebrosum (Black 1971) Jakubowsky 1986

  • Cyclagelosphaera Noël 1965

  • C. margerelii Noël 1965

  • C. tubulata (Grün & Zweili 1980) Cooper 1987

  • Diazomatolithus Noël 1965

  • D. lehmanii Noël 1965

  • Discorhabdus Noël 1965

  • Discorhabdus sp.

  • Ethmorhabdus Noël 1965

  • E. gallicus Noël 1965

  • Hexapodorhabdus Noël 1965

  • H. cuvillieri Noël 1965

  • Manivitella Thierstein 1971

  • M. pemmatoidea (Deflandre in Manivit 1965) Thierstein 1971

  • Polypodorhabdus Noël 1965

  • P. escaigii Noël 1965

  • P. madingleyensis Black 1971

  • Staurolithites Caratini 1963

  • S. stradneri Rood et al. 1971

  • S. lumina Bown 1998

  • S. quadriaculla (Noël 1965) Rood et al. 1971

  • Stephanolithion Deflandre 1939

  • S. atmetos Cooper 1987

  • S. bigotii Deflandre 1939

  • S. brevispinus Wind & Wise in Wise 1988

  • Stradnerlithus Black 1971

  • S. comptus Black 1971

  • S. geometricus (Górka 1957) Bown & Cooper 1989

  • Tegumentum Thierstein in Roth & Thierstein 1972

  • Truncatoscaphus

  • T. intermedius Perch-Nielsen 1986

  • Watznaueria Reinhardt 1964

  • W. barnesae (Black 1959) Perch-Nielsen 1968

  • W. britannica (Stradner 1963) Reinhardt 1964

  • W. communis (Stradner 1963) Reinhardt 1964

  • W. fossacincta (Black 1971) Bown in Bown & Cooper 1989

  • W. ovata Bukry 1969

  • Zeugrhabdotus Reinhardt 1965

  • Z. erectus (Deflandre in Deflandre & Fert 1954) Reinhardt 1965

  • Z. fissus Grün & Zweili 1980

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kessels, K., Mutterlose, J. & Ruffell, A. Calcareous nannofossils from late Jurassic sediments of the Volga Basin (Russian Platform): evidence for productivity-controlled black shale deposition. Int J Earth Sci (Geol Rundsch) 92, 743–757 (2003). https://doi.org/10.1007/s00531-003-0343-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-003-0343-x

Keywords

Navigation