Skip to main content
Log in

New age constraints for Grenville-age metamorphism in western central Dronning Maud Land (East Antarctica), and implications for the palaeogeography of Kalahari in Rodinia

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

New SHRIMP zircon data from Gjelsvikfjella and Mühlig–Hofmann–Gebirge (East Antarctica) indicate that the metamorphic basement is composed of Grenville-age rocks that are most likely part of the north-eastern continuation of the Namaqua–Natal–Maud Belt. Crystallisation ages of meta-igneous rocks range between ca. 1,150 to 1,100 Ma, with little inheritance recorded. Metamorphic zircon overgrowth during high-grade metamorphism is dated between ca. 1,090 to 1,050 Ma. Both, the crystallisation ages and the metamorphic overprint are similar to U–Pb data from a number of areas along a ca. 2,000-km stretch from Natal in South Africa to central Dronning Maud Land. The basement underwent in part strong high-grade reworking during the collision of East and West Gondwana at ca. 550 Ma. The timing of Grenville-age metamorphism has important implications for the position of Kalahari in Rodinia. It also questions that Coats Land is part of the Maud Belt because the undeformed volcanic rocks of Coats Land are older than the main metamorphism within the Maud Belt and, therefore, must rest on older basement. This interpretation explains why the pole of Coats Land at ca. 1,110 Ma differs from the Kalahari poles by 30°, i.e. Coats Land had not yet amalgamated to Kalahari. On the other hand, the palaeopoles from Coats Land and Laurentia at 1,110 Ma are identical within error. Thus, Coats Land could have been part of Laurentia prior to the final amalgamation of Rodinia, the Namaqua–Natal–Maud Belt could have been a part of the Grenville Belt and the entire Kalahari Craton could indeed have opposed Laurentia on its eastern side.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.A
Fig. 4.
Fig. 5.
Fig. 6A–E.
Fig. 7.

Similar content being viewed by others

References

  • Arndt NT, Todt W, Chauvel M, Tapfer M, Weber K (1991) U–Pb zircon age and Nd isotopic composition of granitoids, charnockites and supracrustal rocks from Heimefrontfjella, Antarctica. Geol Rundsch 80:759–777

    Google Scholar 

  • Austrheim H, Elvevold S, Engvik AK, Paulsson O (1997) Geological observations in Gjelsvikfjella, Mühlig-Hoffmannfjella and western Orvinfjella during NARE 96/97. Report of the Norwegian Antarctic Research Expedition 1996/97. Norsk Polar Institutt Meddelelser, 148:77–84

  • Bauer W (1995) Strukturentwicklung und Petrogenese des metamorphen Grundgebirges der nördlichen Heimefrontfjella (westliches Dronning Maud Land/Antarktika). Berichte Polarforschung 171:1-222

    Google Scholar 

  • Bauer W, Jacobs J (2000) German expedition 1999/2000 to Gjelsvikfjella and western Mühlig–Hoffmann–Gebirge, Central Dronning Maud Land, Antarctica. Gondwana Res 3:557–559

    Google Scholar 

  • Bauer W, Siemes H (2003) Prism <c>slip in deformed quartz in granulite-facies rocks from the eastern Orvinfjella, central Dronning Maud Land, Antarctica. Geol Jb B96 (in press)

  • Bucher-Nurminen K, Ohta Y (1993) Granulites and garnet–cordierite gneisses from Dronning Maud Land, Antarctica. J Metamorph Geol 11:691–703

    CAS  Google Scholar 

  • Bucher-Nurminen K, Ohta Y, Austrheim H, Dallmann W (1990) Geological observation in Gjelsvikfjella and Mühlig-Hofmannfjella. Norsk Polarinstitutt Meddelelser 113:91–100

    Google Scholar 

  • Compston W, Williams IS, Kirschvink JL, Zhang Z, Ma G (1992) Zircon U–Pb ages for the Early Cambrian time-scale. J Geol Soc Lond 149:171–184

    CAS  Google Scholar 

  • Corner B, Groenewald PB (1991) Gondwana reunited. S Afr J Antarctic Res 21:172

    Google Scholar 

  • Dallmann WK, Austrheim H, Bucher-Nurminen K, Ohta Y (1990) Geology around the Norwegian Antarctic Station 'Troll', Jutulsessen, Dronning Maud Land, Norsk Polarinstitutt Meddelelser 111:1–39

  • Dalziel IWD, Mosher S, Gahagan LM (2000) Laurentia–Kalahari collision and the assembly of Rodinia. J Geol 108:499–513

    Article  Google Scholar 

  • De Beer JH, Meyer R (1983) Geoelectrical and gravitational characteristics of the Namaqua–Natal mobile belt and its boundaries. Geol Soc S Afr Spec Publ 10:91–100

    Google Scholar 

  • Golynsky AV, Aleshkova ND (1997) Regional magnetic anomalies of the Weddell Sea region and their geological significance. Polarforschung 67:101–107

    Google Scholar 

  • Golynsky A, Jacobs J (2001) Grenville-age versus Pan-African magnetic anomaly imprints in western Dronning Maud Land, East Antarctica. J Geol 109:136–142

    Article  CAS  Google Scholar 

  • Gose WA, Helper MA, Connelly JN, Hutson FE, Dalziel IWD (1997) Paleomagnetic data and U–Pb isotopic age determinations from Coats Land, Antarctica: implications for late Proterozoic plate reconstructions. J Geophys Res 102:7887–7902

    Google Scholar 

  • Grantham GH, Jackson C, Moyes AB, Groenewald PB, Harris PD, Ferrar G, Krynauw JR (1995) The tectonothermal evolution of the Kirwanveggen-HU Sverdrupfjella areas, Dronning Maud Land, Antarctica. Tectonophysics 75:200–231

    Google Scholar 

  • Grantham GH, Storey BC, Thomas RJ, Jacobs J (1997) The pre-break-up position of Haag Nunataks within Gondwana: Possible correlations in Natal and Dronning Maud Land. In: Ricci CA (ed) The Antarctic region: geological evolution and processes. Terra Antartica Publication, Siena, pp 13–20

  • Grunow A, Hanson R, Wilson T (1996) Were aspects of Pan-African deformation linked to Iapetus opening? Geology 24:1063–1066

    Google Scholar 

  • Halls HC, Pesonen LJ (1982) Paleomagnetism of Keweenawan rocks. Mem Geol Soc Am 156:173–201

    Google Scholar 

  • Hanson RE, Martin MW, Bowring SA, Munyanyiwa H (1998) U–Pb zircon age for the Umkondo dolerites, eastern Zimbabwe: 1.1 Ga large igneous province in southern Africa–East Antarctica and possible Rodinia correlations. Geology 26:1143–1146

    Article  CAS  Google Scholar 

  • Harlan SS (1993) Paleomagnetism of the middle Proterozoic diabase sheets from central Arizona. Can J Earth Sci 30:1415–1426

    Google Scholar 

  • Hartnady C, Joubert P, Stowe C (1985) Proterozoic crustal evolution in southwestern Africa. Episodes 8:236–244

    Google Scholar 

  • Hoffman PF (1991) Did the breakout of Laurentia turn Gondwanaland inside out? Science 252:1409–1412

    Google Scholar 

  • Jacobs J, Bauer W (2001) Gjelsvikfjella, Mühlig–Hoffmann–Gebirge: Another piece of the East Antarctic Orogen? Deutsche Geol Ges 152:249–259

    Google Scholar 

  • Jacobs J, Thomas RJ (1994) Oblique collision at about 1.1 Ga along the southern margin of the Kaapvaal continent, south-east Africa. Geol Rundsch 83:322–333

    Google Scholar 

  • Jacobs J, Thomas RJ, Weber K (1993) Accretion and indentation tectonics at the southern edge of the Kaapvaal craton during the Kibaran (Grenville) orogeny. Geology 21:203–206

    Article  Google Scholar 

  • Jacobs J, Bauer W, Spaeth G, Thomas RJ, Weber K (1996) Lithology and structure of the Grenville-aged (~1.1 Ga) basement of Heimefrontfjella (East Antarctica). Geol Rundsch 85:800–821

    Article  Google Scholar 

  • Jacobs J, Fanning CM, Henjes-Kunst F, Olesch M, Paech H-J (1998) Continuation of the Mozambique Belt into East Antarctica: Grenville-age metamorphism and polyphase Pan-African high-grade events in central Dronning Maud Land. J Geol 106:385–406

    CAS  Google Scholar 

  • Jacobs J, Hansen BT, Henjes-Kunst F, Thomas RJ, Weber K, Bauer W, Armstrong RA, Cornell DH (1999) New age constraints on the Proterozoic/Lower Palaeozoic evolution of Heimefrontfjella, East Antarctica, and its bearing on Rodinia/Gondwana correlations. Terra Antartica 6:377–389

    Google Scholar 

  • Jacobs J, Bauer W, Fanning CM (2003) Late Neoproterozoic/Early Palaeozoic events in central Dronning Maud Land and significance for the southern extension of the East African Orogen into East Antarctica. Precambrian Res (in press)

  • Kruhl JH (1996) Prism- and basal-plane parallel subgrain boundaries in quartz: a microstructural geothermobarometer. J Metamorph Geol 14:581–589

    Google Scholar 

  • Krylov AY, Voronov PS, Silin Y (1961) Absolyutznyjy vozrast kristallicheskogo fundamenta vostochno-antarkticheskojy platformy (Absolute age of the crystalline basement of the East-Antarctic platform). Doklady Akademii Nauk SSSR 143:18–21

    Google Scholar 

  • Lawver LA, Scotese CR (1987) A revised reconstruction of Gondwanaland. In: McKenzie GD (ed) Gondwana six: structure, tectonics and geophysics. Am Geophys Union Geophys Monogr, pp 17–23

  • Ludwig KR (1999) User's manual for Isoplot/Ex, version 2.10, a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication 1, 2455 Ridge Road, Berkeley, CA 94709

  • Ludwig KR (2000) SQUID 1.00, A user's manual. Berkeley Geochronology Center Special Publication 2, 2455 Ridge Road, Berkeley, CA 94709

  • Matthews PE (1972) Possible Precambrian obduction and plate tectonics in southeastern Africa. Nature 240:37–39

    PubMed  Google Scholar 

  • Mendonides P, Armstrong RA, Eglington BM, Thomas RJ (2003) Metamorphic history and U–Pb zircon (SHRIMP) geochronology of the Glenmore granite: implications for the tectonic evolution of the Natal Metamorphic Province. S Afr J Geol (in press)

  • Mezger K, Essene EJ, van der Pluijm BA, Halliday AN (1993) U–Pb geochronology of the Grenville Orogen of Ontario and New York: constraints on ancient crustal tectonics. Contrib Mineral Petrol 114:13–26

    CAS  Google Scholar 

  • Moyes AB (1993) The age and origin of the Jutulsessen granitic gneiss, Gjelsvikfjella, Dronning Maud Land. S Afr J Antarctic Res 23:25–32

    Google Scholar 

  • Ohta Y (1993) Nature environment map, Gjelsvikfjella and western Mühlig-Hofmannfjella, Dronning Maud Land, Antarctica, 1:100,000. Sheets 1 and 2. Norsk Polarinstitutt Temakart No 24, Oslo

  • Ohta Y, Tørudbakken B (1985) Geology of Gjelsvikfjella and western Mühlig-Hoffmannfjella, western Dronning Maud Land, East Antarctica. In: Orheim O (ed) Report of the Norwegian Antarctic Research Expedition (NARE 1984/85). Norwegian Polar Institute Report Series, Oslo, pp 35–41

  • Ohta Y, Tørudbakken BO, Shiraishi K (1990) Geology of Gjelsvikfjella and western Mühlig-Hoffmannfjella, Dronnig Maud Land, east Antarctica. Polar Res 8:99–126

    Google Scholar 

  • Paces JB, Miller JD (1993) Precise U–Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagmatic processes associated with the 1.1 Ga Midcontinent Rift System. J Geophys Res 98:13997–14013

    CAS  Google Scholar 

  • Pearce JA, Harris NBW, Tindle AG (1984) Trace element diagram for the tectonic interpretation of granitic rocks. J. Petrol 25:956–983

    CAS  Google Scholar 

  • Peters M, Haverkamp B, Emmermann R, Kohnen H, Weber K (1991) Palaeomagnetism, K–Ar dating and geodynamic setting of igneous rocks in western and central Neuschwabenland, Antarctica. In: Thomson MRA, Crame JA, Thomson JW (eds) Geological evolution of Antarctica. Cambridge University Press, Cambridge, pp 549–555

  • Porada H (1989) Pan-African rifting and orogenesis in southern to equatorial Africa and eastern Brazil. Precambrian Res 44:103–136

    Google Scholar 

  • Powell CM, Jones DL, Pisarevsky S, Wingate MTD (2001) Palaeomagnetic constraints on the position of the Kalahari craton in Rodinia. Precambrian Res 110:33–46

    Article  CAS  Google Scholar 

  • Ravich MG, Krylov AY, Solov' ev D, Silin Y (1962) Geologiya i petrologiya tsentral'noy chasti gor Zemli Korolevy Mod (Vostochnaya Antarktida) (Geology and petrology of the mountains of central Queen Maud Land, eastern Antarctica). Nedra, Leningrad

  • Shackleton RM (1996) The final collision zone between East and West Gondwana: where is it? J Afr Earth Sci 23:271–287

    Google Scholar 

  • Stern RJ (1994) Arc assembly and continental collision in the Neoproterozoic East African Orogen: implications for the consolidation of Gondwana. Rev Earth Planet Sci 22:319–351

    Article  Google Scholar 

  • Tera F, Wasserburg G (1972) U–Th–Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. Earth Planet Sci Lett 14:281–304

    Article  CAS  Google Scholar 

  • Thomas RJ (1989) The petrogenesis of the Mzumbe Gneiss Suite, a tonalite–trondhjemite orthogneiss suite from the southern part of Natal Structural and Metamorphic Province. S Afr J Geol 92:322–338

    Google Scholar 

  • Thomas RJ, Eglington BM, Bowing SA, Retief EA, Walraven F (1993a) New isotope data from a Late Proterozoic porphyritic granite–charnockite association from Natal, South Africa. Precam Res 61:83–101

    Google Scholar 

  • Thomas RJ, Eglington BM, Bowring SA (1993b) Dating the cessation of Kibaran magmatism in Natal, South Africa. J Afr Earth Sci 16:5-24

    Google Scholar 

  • Thomas RJ, Agenbacht ALD, Cornell DH, Moore JM (1994) The Kibaran of southern Africa: tectonic evolution and metallogeny. Ore Geol Rev 9:131–160

    Google Scholar 

  • Wareham CD, Pankhurst RJ, Thomas RJ, Storey BC, Grantham GH, Jacobs J, Eglington BM (1998) Pb, Nd and Sr isotopic mapping of Grenville-age crustal provinces in Rodinia. J Geol 106:647–659

    CAS  Google Scholar 

  • Williams IS (1998) U–Th–Pb geochronology by ion microprobe. In: McKibben MA, Shanks WC III, Ridley WI (eds) Applications of microanalytical techniques to understanding mineralizing processes. Rev Econ Geol 7:1–35

    Google Scholar 

  • Wilson M (1989) Igneous petrogenesis. Chapman and Hall, London

Download references

Acknowledgement

This project was funded in part through Deutsche Forschungsgemeinschaft grant Ja 617/14 to J. Jacobs and Ba 1636/5 to W. Bauer. We thank the Scandinavian Antarctic Program and the Alfred Wegener Institute for Polar and Marine Research for logistic support. A. Moyes and S. Master are thanked for their helpful reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Jacobs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobs, J., Bauer, W. & Fanning, C.M. New age constraints for Grenville-age metamorphism in western central Dronning Maud Land (East Antarctica), and implications for the palaeogeography of Kalahari in Rodinia. Int J Earth Sci (Geol Rundsch) 92, 301–315 (2003). https://doi.org/10.1007/s00531-003-0335-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-003-0335-x

Keywords

Navigation