Skip to main content
Log in

A fuzzy detection approach to high-dimensional anomalies

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

Rare anomalies allow to be hidden in any subspace upon a high-dimensional space so that high-dimensional dimensional of the data brings a lot of trouble for anomalous detectors. To mine high-dimensional anomalies, this paper proposes a novel hypersphere with density fuzzy. On the one hand, the major contributors are chosen by using the fuzzy and a density estimator to quantify the contributions created by unknown instances, and then the hypersphere trained by the major contributors achieves anomalous identification. On the other hand, an inner product kernel is also derived to assist that the hypersphere pays more attention to local regions containing anomalies. Experimental results on ten UCI datasets show that the proposed model wins over the opponents on the three ultra-high dimensional datasets and most high-dimensional datasets in mining anomalies. Results also indicate that these models with fuzzy perform better than those without fuzzy, meanwhile, there is no significant difference between detected results. We demonstrate that calculating data density or attending data local regions can alleviate negative effects caused by high dimensionality on anomalous detection results to a certain extent. Additionally, the effort created by fuzzy to resist the curse of dimensionality do not rely on specific scenarios and specific detectors, while the assistance afforded by kernels to resist high dimensionality is dependent of detector structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Algorithm 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be made available on request. The data is cited athttp://archive.ics.uci.edu/ml/datasets.php?format=&task=&att=&area=&numAtt=&numIns=&type=mvar&sort=nameUp&view=table.

References

  1. Chalapathy, R., Chawla, S.: Deep Learning for Anomaly Detection: A Survey, pp. 1–50 (2019). arXiv:1901.03407v2

  2. Pang, G., Cao, L., Chen, L., et al.: Learning representations of ultrahigh-dimensional data for random distance-based outlier detection. In: KDD, pp. 2041–2050 (2018)

  3. Wang, H., Pang, G., Shen, C., et al.: Unsupervised representation learning by predicting random distances. In: Twenty-Ninth International Joint Conference on Artificial Intelligence Main track, pp. 2950–2956 (2020)

  4. Li, Y., Peng, X., Zhang, J., et al.: DCT-GAN: dilated convolutional transformer-based GAN for time series anomaly detection. IEEE Trans. Knowl. Data Eng. 35(4), 3632–3644 (2023)

    Article  Google Scholar 

  5. Kong, F., Li, J., Jiang, B., et al.: Integrated generative model for industrial anomaly detection via bidirectional LSTM and attention mechanism. IEEE Trans. Industr. Inf. 19(1), 541–550 (2023)

    Article  Google Scholar 

  6. Shanmuga Priya, G., Latha, M., Manoj, K., Prakash, S.: Unusual activity and anomaly detection in surveillance using GMM-KNN Model. In: 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV), pp. 1–10. IEEE (2021)

  7. Sasirekha, R., Kanisha, B.: KNN based peak-LOF for outlier detection. In: 2022 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES), pp. 1–10, IEEE (2022)

  8. Rani, S., Tripathi, K., Arora, Y., Kumar, A.: Analysis of Anomaly detection of Malware using KNN. In: 2022 2nd International Conference on Innovative Practices in Technology and Management (ICIPTM), pp. 1–10, IEEE (2022)

  9. Abid, A., El Khediri, S., Moulahi, S., Cheour, R., Kachouri, R.: Vote and KNN outlier detection in wireless sensor networks. In: 2021 International Symposium on Networks, Computers and Communications (ISNCC), pp. 1–10. IEEE (2021)

  10. Aboelwafa, M.M., Seddik, K.G., Eldefrawy, M.H., Gadallah, Y., Gidlund, M.: A machine learning-based technique for false data injection attacks detection in industrial iot. IEEE Internet Things J. 7(9), 8462–8471 (2020)

    Article  Google Scholar 

  11. Jiang, K., Xie, W., Lei, J., Li, Z., Li, Y., Jiang, T., Qian, Du.: E2E-LIADE: end-to-end local invariant autoencoding density estimation model for anomaly target detection in hyperspectral image. IEEE Trans. Cybern. 52(11), 11385–11396 (2022)

    Article  Google Scholar 

  12. Lyu, Y., Han, Z., Zhong, J., Li, C., Liu, Z.: A generic anomaly detection of catenary support components based on generative adversarial networks. IEEE Trans. Instrum. Meas. 69(5), 2439–2448 (2020)

    Article  Google Scholar 

  13. Mingjing, Xu., Baraldi, P., Xuefei, Lu., Zio, E.: Generative adversarial networks with AdaBoost ensemble learning for anomaly detection in high-speed train automatic doors. IEEE Trans. Intell. Transp. Syst. 23(12), 23408–23421 (2022)

    Article  Google Scholar 

  14. Zheng, J., Li, J., Liu, C., Wang, J., Li, J., Liu, H.: Anomaly detection for high-dimensional space using deep hypersphere fused with probability approach. Complex Intell. Syst. 8, 4205–4220 (2022)

    Article  Google Scholar 

  15. Qiao, Y., Kui, Wu., Jin, P.: Efficient anomaly detection for high-dimensional sensing data with one-class support vector machine. IEEE Trans. Knowl. Data Eng. 35(1), 404–417 (2023)

    Article  Google Scholar 

  16. Şalk, Y., Uzun, B., Çevikalp, H., Sarıbaş, H.: Anomaly detection with deep compact hypersphere. In: 30th Signal Processing and Communications Applications Conference (SIU), pp. 1–4, IEEE (2022)

  17. Kirchheim, K., Filax, M., Ortmeier, F.: Multi-class hypersphere anomaly detection. In: 26th International Conference on Pattern Recognition (ICPR), pp. 1–6. IEEE (2022)

  18. Li, Z., Li, H., Lam, K., Chichung Kot, A.: Unseen face presentation attack detection with hypersphere loss. In: 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–10 (2020)

  19. Mei, B., Yitian, Xu.: Multi-task least squares twin support vector machine for classification. Neurocomputing 338, 26–33 (2019)

    Article  Google Scholar 

  20. Zhou, S., Li, D., Zhang, Z., Ping, R.: A new membership scaling fuzzy C-means clustering algorithm. IEEE Trans. Fuzzy Syst. 29(9), 2810–2818 (2021)

    Article  Google Scholar 

  21. Banerjee, I., Mullick, S.S., Das, S.: On convergence of the class membership estimator in fuzzy k-nearest neighbor classifier. IEEE Trans. Fuzzy Syst. 27(6), 1226–1236 (2019)

    Article  Google Scholar 

  22. Rezvani, S., Wang, X., Pourpanah, F.: Intuitionistic fuzzy twin support vector machines. IEEE Trans. Fuzzy Syst. 27(11), 2040–2151 (2019)

    Article  Google Scholar 

  23. Richhariya, B., Tanveer, M.: A robust fuzzy least squares twin support vector machine for class imbalance learning. Appl. Soft Comput. 71, 418–432 (2018)

    Article  Google Scholar 

  24. Seegmiller, C., Chamberlain, B., Miller, J., Masoum, M.A.S., Shekaramiz, M.: Wind turbine fault classification using support vector machines with fuzzy logic. In: 2022 Intermountain Engineering, Technology and Computing (IETC), pp. 1–10. IEEE (2022)

  25. Sun, T., Sun, X.-M.: New results on classification modeling of noisy tensor datasets: a fuzzy support tensor machine dual model. IEEE Trans. Syst. Man Cybern. Syst. 52(8), 5188–5200 (2022)

    Article  Google Scholar 

  26. Jeong, K., Choi, S.B.: Takagi–Sugeno fuzzy observer-based magnetorheological damper fault diagnosis using a support vector machine. IEEE Trans. Control Syst. Technol. 30(4), 1723–1735 (2022)

    Article  Google Scholar 

  27. Shreevastava, S., Maratha, P., Som, T., Tiwari, A.K.: A novel (alpha, beta)-indiscernibility-assisted intuitionistic fuzzy-rough set model and its application to dimensionality reduction. Optimization 1–20 (2023)

  28. Kumar, R., Singh, U.P., Bali, A., et al.: Adaptive control of unknown fuzzy disturbance-based uncertain nonlinear systems: application to hypersonic flight dynamics. J. Anal. 1–20 (2023)

  29. Jain, P., Tiwari, A., Som, T.: Fuzzy rough assisted missing value imputation and feature selection. Neural Comput. Appl. 35, 2773–2793 (2023)

    Article  Google Scholar 

  30. Jain, P., Tiwari, A.K., Som, T.: An intuitionistic fuzzy bireduct model and its application to cancer treatment. Comput. Ind. Eng. 168, 1–20 (2022)

    Article  Google Scholar 

  31. Shreevastava, S., Singh, S., Tiwari, A.K., Som, T.: Different classes ratio and Laplace summation operator based intuitionistic fuzzy rough attribute selection. Iran. J. Fuzzy Syst. 18(6), 67–82 (2021)

    MathSciNet  Google Scholar 

  32. Jayasumana, S., Hartley, R., Salzmann, M., et al.: Optimizing over radial kernels on compact manifolds. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3802–3809 (2014)

  33. Schoenberg, I.J.: Positive definite functions on spheres. Duke Math. J. 9(1), 96–108 (1942)

    Article  MathSciNet  Google Scholar 

  34. Berg, C., Christensen, J.P.R., Ressel, P.: Harmonic Analysis on Semigroups. Springer Press, New York (1984)

    Book  Google Scholar 

  35. Chen, D., Wang, H., Tsang, E.C.C.: Generalized Mercer theorem and its application to feature space related to indefinite kernels. In: Proceedings of the Seventh International Conference on Machine Learning and Cybernetics, Kunming, pp. 774–777. IEEE (2008)

  36. Hechtlinger, Y., Póczos, B., Wasserman, L.: Cautious deep learning (2019). arXiv:1805.09460

  37. Jayasumana, S., Hartley, R., Salzmann, M., et al.: Kernel methods on the Riemannian manifold of symmetric positive definite matrices. In: IEEE Conference on Computer Vision and Pattern Recognition (2013)

  38. Zheng, J., Hongchun, Qu., Li, Z., et al.: A deep hypersphere approach to high-dimensional anomaly detection. Appl. Soft Comput. 125, 1–17 (2022)

    Article  Google Scholar 

  39. Zhang, Y., Chen, Y., Wang, J., et al.: Unsupervised deep anomaly detection for multi-sensor time-series signals. IEEE Trans. Knowl. Data Eng. 35(2), 2118–2132 (2023)

    Google Scholar 

  40. Jézéquel, L., Ngoc-Son, Vu., Beaudet, J., et al.: Efficient anomaly detection using self-supervised multi-cue tasks. IEEE Trans. Image Process. 32, 807–821 (2023)

    Article  Google Scholar 

  41. Wan, Q., Gao, L., Li, X., et al.: Unsupervised image anomaly detection and segmentation based on pretrained feature mapping. IEEE Trans. Ind. Inf. 19(3), 2330–2339 (2023)

    Article  Google Scholar 

  42. Goyal, V., Yadav, A., Kumar, S., et al.: Lightweight LAE for anomaly detection with sound-based architecture in smart poultry farm. IEEE Internet Things J. 11(5), 8199–8209 (2024)

    Article  Google Scholar 

  43. Al-Khateeb, A., Faisal Kamal, N., Alnuweiri, H., et al.: Scalable light-weight anomaly detection for data of individual smart meters. In: 2024 4th International Conference on Smart Grid and Renewable Energy, pp. 1–8. IEEE (2024)

  44. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine learning algorithms. In: Advances in Neural Information Processing Systems, pp. 2951–2959 (2012)

  45. Oh, C., Gavves, E., Welling, M.: BOCK: Bayesian Optimization with Cylindrical Kernels (2019). arXiv:1806.01619v2

  46. Campos, G.O., Zimek, A., Sander, J., et al.: On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study. Data Min. Knowl. Disc. 30, 891–927 (2016)

    Article  MathSciNet  Google Scholar 

  47. Zheng, J., Hongchun, Qu., Li, Z., et al.: An irrelevant attributes resistant approach to anomaly detection in high-dimensional space using a deep hypersphere structure. Appl. Soft Comput. 116, 1–20 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Jian Zheng proposed the method and wrote the manuscript. Jian Zheng and NanShan Ruan designed the experiments. Pingping Wei, Lin Li and Jingyue Zhang performed the source code.

Corresponding author

Correspondence to Jian Zheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

There are no conflict interests of the authors.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by B. Bao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, J., Ruan, N., Wei, P. et al. A fuzzy detection approach to high-dimensional anomalies. Multimedia Systems 30, 146 (2024). https://doi.org/10.1007/s00530-024-01343-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00530-024-01343-7

Keywords

Navigation