Skip to main content

Advertisement

Log in

HCNNet: hybrid convolution neural network for automatic identification of ischaemia in diabetic foot ulcer wounds

  • Special Issue Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

The diabetic foot ulcer (DFU) is a significant medical complication for diabetic patients, which often leads to lower limb amputation. The manual identification of ischaemia in DFU is laborious, time-consuming, and costly. This study aims to develop an efficient deep learning (DL) method for the early identification of ischaemia in DFU. Therefore, a novel Convolutional Neural Network (CNN) architecture (HCNNet) is proposed by integrating multiple hybridised blocks from inception, residual, and dense modules along with appropriately placed Squeeze-and-Excitation (SE) block and intermediate transition layers. The proposed HCNNet is trained several times using various optimizer and learning rate settings to optimise its performance. It achieves promising Area Under the ROC Curve (AUC) scores of 0.999 for ischaemia identification. The experimental results show that the proposed HCNNet outperforms existing State-Of-The-Art (SOTA) methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the authors but restrictions apply to the availability of these data, which were used under license for the current study, and so are not publicly available. Data are, however, available with permission from the Department of Computing and Mathematics, Manchester Metropolitan University England (URL: http://www2.docm.mmu.ac.uk/STAFF/M.Yap/dataset.php).

Notes

  1. http://www2.docm.mmu.ac.uk/STAFF/M.Yap/dataset.php.

References

  1. Yap, M.H., Cassidy, B., Pappachan, J.M., O’Shea, C., Gillespie, D., Reeves, N.D.: Analysis towards classification of infection and ischaemia of diabetic foot ulcers. In: 2021 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI), pp. 1–4 (2021). IEEE

  2. Mallikarjuna, S., Shivakumara, P., Khare, V., Basavanna, M., Pal, U., Poornima, B.: Multi-gradient-direction based deep learning model for Arecanut disease identification. CAAI Trans. Intell. Technol. 7(2), 156–166 (2022)

    Article  Google Scholar 

  3. Das, S.K., Namasudra, S., Kumar, A., Moparthi, N.R.: Aespnet: attention enhanced stacked parallel network to improve automatic diabetic foot ulcer identification. Image Vis. Comput. 138, 104809 (2023)

    Article  Google Scholar 

  4. Jiang, S., Gu, Y., Kumar, E.: Magnetic resonance imaging (mri) brain tumor image classification based on five machine learning algorithms. Cloud Comput. Data Sci. 4(2), 122–133 (2023)

    Article  Google Scholar 

  5. Taherdoost, H., Madanchian, M.: Decision making: Models, processes, techniques. Cloud Comput. Data Sci. 5(1), 1–14 (2023)

    Article  Google Scholar 

  6. Jia, Z., Wang, W., Zhang, J., Li, H.: Contact high-temperature strain automatic calibration and precision compensation research. J. Artif. Intell. Technol. 2(2), 69–76 (2022)

    Google Scholar 

  7. Khemchandani, M.A., Jadhav, S.M., Iyer, B.: Brain tumor segmentation and identification using particle imperialist deep convolutional neural network in mri images. IJIMAI 7(7), 38–47 (2022)

    Article  Google Scholar 

  8. Chakraborty, R., Verma, G., Namasudra, S.: Ifodpso-based multi-level image segmentation scheme aided with masi entropy. J. Ambient. Intell. Humaniz. Comput. 12, 7793–7811 (2021)

    Article  Google Scholar 

  9. Zhang, H., Wei, Y., Zhou, H., Wu, Q.: Ed-dehaze net: encoder and decoder dehaze network. IJIMAI 7(5), 93–99 (2022)

    Article  Google Scholar 

  10. García, A.J.F., Rodríguez, J.C.P., Ramos, A.P., Figueroa, F.S., Gutiérrez, J.D.: Compareml: a novel approach to supporting preliminary data analysis decision making. IJIMAI 7(4), 225–238 (2022)

    Article  Google Scholar 

  11. Filipe, V., Teixeira, P., Teixeira, A.: Automatic classification of foot thermograms using machine learning techniques. Algorithms 15(7), 236 (2022)

    Article  Google Scholar 

  12. Goyal, M., Reeves, N.D., Davison, A.K., Rajbhandari, S., Spragg, J., Yap, M.H.: Dfunet: convolutional neural networks for diabetic foot ulcer classification. IEEE Trans. Emerg. Top. Comput. Intell. 4(5), 728–739 (2018)

    Article  Google Scholar 

  13. Alzubaidi, L., Fadhel, M.A., Oleiwi, S.R., Al-Shamma, O., Zhang, J.: Dfu_qutnet: diabetic foot ulcer classification using novel deep convolutional neural network. Multimed. Tools Appl. 79(21), 15655–15677 (2020). https://doi.org/10.1007/s11042-019-07820-w

    Article  Google Scholar 

  14. Veredas, F., Mesa, H., Morente, L.: Binary tissue classification on wound images with neural networks and Bayesian classifiers. IEEE Trans. Med. Imaging 29(2), 410–427 (2009). https://doi.org/10.1109/TMI.2009.2033595

    Article  PubMed  Google Scholar 

  15. Xu, P., Wang, K., Hassan, M.M., Chen, C.-M., Lin, W., Hassan, M.R., Fortino, G.: Adversarial robustness in graph-based neural architecture search for edge ai transportation systems. IEEE Trans. Intell. Transport. Syst. 24(8), 8465–8474 (2022)

    Article  Google Scholar 

  16. Hassan, F.S., Gutub, A.: Improving data hiding within colour images using hue component of hsv colour space. CAAI Trans. Intell. Technol. 7(1), 56–68 (2022)

    Article  Google Scholar 

  17. Gao, S., Li, S.: Bloody mahjong playing strategy based on the integration of deep learning and xgboost. CAAI Trans. Intell. Technol. 7(1), 95–106 (2022)

    Article  Google Scholar 

  18. Scebba, G., Zhang, J., Catanzaro, S., Mihai, C., Distler, O., Berli, M., Karlen, W.: Detect-and-segment: a deep learning approach to automate wound image segmentation. Inform. Med. Unlocked 29, 100884 (2022)

    Article  Google Scholar 

  19. Wang, L., Pedersen, P.C., Agu, E., Strong, D.M., Tulu, B.: Area determination of diabetic foot ulcer images using a cascaded two-stage svm-based classification. IEEE Trans. Biomed. Eng. 64(9), 2098–2109 (2016). https://doi.org/10.1109/TBME.2016.2632522

    Article  PubMed  Google Scholar 

  20. Ohura, N., Mitsuno, R., Sakisaka, M., Terabe, Y., Morishige, Y., Uchiyama, A., Okoshi, T., Shinji, I., Takushima, A.: Convolutional neural networks for wound detection: the role of artificial intelligence in wound care. J. Wound Care 28(Sup10), 13–24 (2019). https://doi.org/10.12968/jowc.2019.28.Sup10.S13

    Article  Google Scholar 

  21. Goyal, M., Reeves, N.D., Rajbhandari, S., Ahmad, N., Wang, C., Yap, M.H.: Recognition of ischaemia and infection in diabetic foot ulcers: dataset and techniques. Comput. Biol. Med. 117, 103616 (2020). https://doi.org/10.1016/j.compbiomed.2020.103616

    Article  PubMed  Google Scholar 

  22. Rajinikanth, V., Kadry, S., Moreno-Ger, P.: Resnet18 supported inspection of tuberculosis in chest radiographs with integrated deep, lbp, and dwt features. Int. J. Interact. Multimedia Artif. Intell. 8(2), 38–46 (2023)

    Article  Google Scholar 

  23. Namasudra, S.: Taxonomy of DNA-based security models. In: Namasudra S, Deka GC (eds) Advances of DNA Computing in Cryptography. Chapman and Hall/CRC (2018)

  24. Das, S.K., Roy, P., Mishra, A.K.: Recognition of ischaemia and infection in diabetic foot ulcer: a deep convolutional neural network based approach. Int. J. Imaging Syst. Technol. 32(1), 192–208 (2021)

    Article  Google Scholar 

  25. Zheng, M., Zhi, K., Zeng, J., Tian, C., You, L.: A hybrid cnn for image denoising. J. Artif. Intell. Technol. 2(3), 93–99 (2022)

    Google Scholar 

  26. Ta, N., Chen, H., Liu, X., Jin, N.: Let-net: locally enhanced transformer network for medical image segmentation. Multimedia Syst. 29, 3847–3861 (2023)

    Article  Google Scholar 

  27. Meng, J., Li, Y., Liang, H., Ma, Y.: Single-image dehazing based on two-stream convolutional neural network. J. Artif. Intell. Technol. 2(3), 100–110 (2022)

    Google Scholar 

  28. Ahsan, M., Naz, S., Ahmad, R., Ehsan, H., Sikandar, A.: A deep learning approach for diabetic foot ulcer classification and recognition. Information 14(1), 36 (2023)

    Article  Google Scholar 

  29. Toofanee, M.S.A., Dowlut, S., Hamroun, M., Tamine, K., Petit, V., Duong, A.K., Sauveron, D.: Dfu-siam a novel diabetic foot ulcer classification with deep learning. IEEE Access. 11, 98315–98332 (2023)

    Article  Google Scholar 

  30. Reyes-Luévano, J., Guerrero-Viramontes, J., Romo-Andrade, J.R., Funes-Gallanzi, M.: Dfu_virnet: a novel visible-infrared cnn to improve diabetic foot ulcer classification and early detection of ulcer risk zones. Biomed. Signal Process. Control 86, 105341 (2023)

    Article  Google Scholar 

  31. Khalil, M., Naeem, A., Naqvi, R.A., Zahra, K., Muqarib, S.A., Lee, S.-W.: Deep learning-based classification of abrasion and ischemic diabetic foot sores using camera-captured images. Mathematics 11(17), 3793 (2023)

    Article  Google Scholar 

  32. Liu, Z., John, J., Agu, E.: Diabetic foot ulcer ischemia and infection classification using efficientnet deep learning models. IEEE Open J. Eng. Med. Biol. 3, 189–201 (2022)

    Article  PubMed  Google Scholar 

  33. Santos, F., Santos, E., Vogado, L.H., Ito, M., Bianchi, A., Tavares, J.M., Veras, R.: Dfu-vgg, a novel and improved vgg-19 network for diabetic foot ulcer classification. In: 2022 29th International Conference on Systems, Signals and Image Processing (IWSSIP), pp. 1–4 (2022). IEEE

  34. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., et al.: Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)

  35. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  36. Ruder, S.: An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747 (2016)

  37. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12(7), 2121–2159 (2011)

    MathSciNet  Google Scholar 

  38. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016). http://arxiv.org/abs/1512.00567

  39. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

  40. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

  41. Shafiq, H., Gilanie, G., Sajid, M., Ahsan, M.: Dental radiology: a convolutional neural network-based approach to detect dental disorders from dental images in a real-time environment. Multimedia Syst., p. 1–13 (2023)

  42. Keskar, N.S., Socher, R.: Improving generalization performance by switching from adam to sgd. arXiv preprint arXiv:1712.07628 (2017)

  43. Wilson, A.C., Roelofs, R., Stern, M., Srebro, N., Recht, B.: The marginal value of adaptive gradient methods in machine learning. arXiv preprint arXiv:1705.08292 (2017)

Download references

Author information

Authors and Affiliations

Authors

Contributions

SKD is the main author of this paper, who has conceived the idea and discussed it with all co-authors. He has also developed all the algorithms. SN has performed the simulations of this paper and write-up of this work. AKS has supervised the entire work, evaluated the performance, and proofread the paper.

Corresponding authors

Correspondence to Suyel Namasudra or Arun Kumar Sangaiah.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S.K., Namasudra, S. & Sangaiah, A.K. HCNNet: hybrid convolution neural network for automatic identification of ischaemia in diabetic foot ulcer wounds. Multimedia Systems 30, 36 (2024). https://doi.org/10.1007/s00530-023-01241-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00530-023-01241-4

Keywords

Navigation