Skip to main content

Advertisement

Log in

Variable bit allocation method based on meta-heuristic algorithms for facial image compression

  • Special Issue Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

High spatial resolution is one of the most important factors in increasing image quality, but it increases the amount of storage memory. On the other hand, in the field of face image compression research, one of the existing challenges is maintaining the image recognition rate. Therefore, it would be very desirable to propose a method that does not reduce the minimum detection rate. This paper examines how to compress face images with high spatial resolution based on meta-heuristic algorithms. In such a way that the images are divided into the same blocks and the task of identifying the important blocks is the responsibility of meta-heuristic algorithms. The fitting function in this condition is to achieve the maximum value of image recognition accuracy. In the simulation and evaluation section, face images of CIE and FEI databases have been investigated as a selective study. The simulation results show the significant effect of the proposed methods using meta-heuristic algorithms in increasing the quality of PSNR and SSIM compared to the detection efficiency. The recognition accuracy of face images shows 1.25% more than the condition without compression for the gray wolf meta-heuristic algorithm. According to the proposed method, the larger the block division value, the better the average PSNR and SSIM. In general, depending upon the application of the problem, there is a trade-off to achieve the highest average PSNR or SSIM using genetic, whale, or gray wolf algorithms. However, the gray wolf algorithm reaches its optimal answer much faster than the genetic and whale algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

Access to data and information is open to the public.

References

  1. Chien-Hsiung, L., Kuo-Liang, C., Jian-Ping, F.: Adjusted 4:2:2 chroma subsampling strategy for compressing mosaic videos with arbitrary RGB color filter arrays in HEVC. In: APSIPA. 2014.

  2. Mohammed, R.B., van Silfhout, R.: High bandwidth data and image transmission using a scalable link model with integrated real-time data compression. Adv. Electr. Eng. Electron. Energy 1, 100017 (2021)

    Google Scholar 

  3. Joshi, K., Gill, S., Yadav, R.: A new method of image steganography using 7th bit of a pixel as indicator by introducing the successive temporary pixel in the gray scale image. J. Comput. Netw. Commun. 2018, 9475142 (2018)

    Google Scholar 

  4. Chaudharya, P., Guptab, R., Singh, A.: Joint image compression and encryption using a novel column-wise scanning and optimization algorithm. Proc. Comput. Sci. 167, 244–253 (2020)

    Article  Google Scholar 

  5. Lakshmi Praba, V., Anitha, S.: Removing coding and inter pixel redundancy in high intensity part of image. J. Emerg. Technol. Meta-heuristic Res. (JETIR) 6(2) (2019)

  6. Bajit, A., Nahid, M., Tamtaoui, A., Benbrahim, M.: A psychovisual optimization of wavelet foveation-based image coding and quality assessment based on human quality criterions. Adv. Sci. Technol. Eng. Syst. J. 5(2), 225–234 (2020)

    Article  Google Scholar 

  7. Moshtaghi, H.R., Eshlaghy, A.T., Motadel, M.R.: A comprehensive review on meta-heuristic algorithms and their classification with novel approach. J. Appl. Res. Ind. Eng. 6(3), 251–267 (2019)

    Google Scholar 

  8. Rikhtegara, A., Pooyanb, M., Manzuric, M.T.: Comparing performance of metaheuristic algorithms for. Int. J. Nonlinear Anal. Appl. 11(1), 301–319 (2020)

    Google Scholar 

  9. Emara, M.E., Abdel-Kader, R.F., Yasein, M.S.: Image compression using advanced optimization algorithms. J. Commun. 21(1), 95–108 (2017)

    Google Scholar 

  10. Jino Ramson, S.R., Lova Raju, K., Vishnu, S., Anagnostopoulos, T.: Nature inspired optimization techniques for image processing—a short review. Springer International Publishing (2019)

  11. Omari, M., Yaichi, S.: Image Compression Based on Genetic Algorithm Optimization

  12. Xu, S., Chang, C.-C., Liu, Y.: A novel image compression technology based on vector quantisation and linear regression prediction. Connect. Sci. (2020). https://doi.org/10.1080/09540091.2020.1806206

    Article  Google Scholar 

  13. Al-Bundi, S.S., Abd, M.S.: A review on fractal image compression using optimization techniques. J. Al-Qadisiyah Comput. Sci. Math. 12(1), 38–48 (2020)

    Article  Google Scholar 

  14. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Article  Google Scholar 

  15. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Soft. 95, 51–67 (2016)

    Article  Google Scholar 

  16. Oloyede, M., Hancke, G., Myburgh, H., Onumanyi, A.: A new evaluation function for face image enhancement in unconstrained environments using metaheuristic algorithms. EURASIP J. Image Video Process. (2019)

  17. Cuevas, E., Trujillo, A., Navarro, M.A., Diaz, P.: Comparison of recent metaheuristic algorithms for shape detection in images. Int. J. Comput. Intell. Syst. 13(1), 1059–1071 (2020)

    Article  Google Scholar 

  18. Sheraj, M., Chopra, A.: Data compression algorithm for audio and image using feature extraction. In: 2020 4th international conference on computer, communication and signal processing (ICCCSP)

  19. Cuevas, E., Zaldívar, D., Perez-Cisneros, M.: Applications of Evolutionary Computation in Image Processing and Pattern Recognition. Springer International Publishing, Cham (2016)

    Book  MATH  Google Scholar 

  20. Geetha, K., Anitha, V., Elhoseny, M., Kathiresan, S., Shamsolmoali, P., Selim, M.M.: An evolutionary lion optimization algorithm-based image compression technique for biomedical applications. Expert Syst. 38(1), e12508 (2021)

    Article  Google Scholar 

  21. Bian, N., Liang, F., Fu, H., Lei, B.: A deep image compression framework for face recognition nding the optimum structure of CNN for face recognition (2019)

  22. El-Kenawy, E.S.M., Mirjalili, S., Abdelhamid, A.A., Ibrahim, A., Khodadadi, N., Eid, M.M.: Meta-heuristic optimization and keystroke dynamics for authentication of smartphone users. Mathematics 10, 2912 (2022). https://doi.org/10.3390/math10162912

    Article  Google Scholar 

  23. Reddy, C.V., Siddaiah, P.: Hybrid LWT-SVD watermarking optimized using metaheuristic algorithms along with encryption for medical image security. Signal Image Process. 6(1), 75 (2015)

    Google Scholar 

  24. Hasan, M.K., Ahsan, M.S., Al-Mamun, A., Newaz, S.H.S., Lee, G.M.: Human face detection techniques: a comprehensive review and future research directions. Electronics 10, 2354 (2021). https://doi.org/10.3390/electronics10192354

    Article  Google Scholar 

  25. Elad, M., Goldenberg, R., Kimmel, R.: Low bit-rate compression of facial images. IEEE Trans. Image Process. 16(9), 2379–2383 (2007)

    Article  MathSciNet  Google Scholar 

  26. Soni, N., Sharma, E.K., Kapoor, A.: Hybrid meta-heuristic algorithm based deep neural network for face recognition. J. Comput. Sci. 51, 101352 (2021)

    Article  Google Scholar 

  27. Mascher-Kampfer, A., Stogner, H., Uhl, A.: Comparison of compression algorithms impact on fingerprint and face recognition accuracy. In: Proc. SPIE 6508, Visual Communications and Image Processing, vol. 650810, p. 12 (2007)

  28. Vila-Forcen, J.E., Voloshynovskiy, S., Koval, O., Pun, T.: Facial image compression based on structured codebooks in overcomplete domain. EURASIP J. Appl. Signal Process. 2006(69042), 1–11 (2006)

    MATH  Google Scholar 

  29. Liang, Y., et al.: Face hallucination with imprecise-alignment using iterative sparse representation. Pattern Recognit. 47(10), 3327–3342 (2014)

    Article  Google Scholar 

  30. Subban, R., Mankame, D., Nayeem, S., Pasupathi, P., Muthukumar, S.: Genetic algorithm based human face recognition. In: Proc. of Int. Conf. on Advances in Communication, Network, and Computing, CNC. Elsevier (2014)

  31. Yang, Y., Liu, J., Tan, S., Wang, H.: A multi-objective differential evolutionary algorithm for constrained multi-objective optimization problems with low feasible ratio. Appl. Soft Comput. J. 80, 42–56 (2019)

    Article  Google Scholar 

  32. Ramadan, R.M., Abdel-Kader, R.F.: Face recognition using particle swarm optimization-based selected features. Int. J. Signal Process. Image Process. Pattern Recognit. 2(2), 51–65 (2009)

    Google Scholar 

  33. Kaur, S., Agarwal, P., Rana, R.S.: Ant colony optimization: a technique used for image processing. Int. J. Comput. Sci. Technol. IJCST 2(2), 173–175 (2011)

    Google Scholar 

  34. Bencherqui, A., Daoui, A., Karmouni, H., Qjidaa, H., Alfidi, M., Sayyouri, M.: Optimal reconstruction and compression of signals and images by Hahn moments and artificial bee colony (ABC) algorithm. Multimed. Tools Appl. 81, 29753–29783 (2022)

    Article  Google Scholar 

  35. Asiedu, L., Essah, B.O., Iddi, S., Doku-Amponsah, K., Mettle, F.O.: Evaluation of the DWT-PCA/SVD recognition algorithm on reconstructed frontal face images. J. Appl. Math. 2021, 5541522 (2021)

    Article  MathSciNet  Google Scholar 

  36. Lu, L., Hu, X., Chen, S., Sun, L., Li, C.: Face Recognition Based on Weighted Wavelet Transform and Compressed Sensing (2016)

  37. https://paperswithcode.com/dataset/orl

  38. Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The FERET Evaluation Methodology for Face Recognition Algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1090–1104 (2000)

    Article  Google Scholar 

  39. He, T., Chen, Z.: End-to-End Facial Image Compression with Integrated Semantic Distortion Metric (2018)

  40. Shahbakhsh, M.B., Hassanpour, H.: Empowering face recognition methods using a gan-based single image super-resolution network. Int. J. Eng. Trans. A Basics 35(10), 1858–1866 (2022)

    Google Scholar 

  41. Selimović, A., Hladnik, A.: Content-aware image compression with convolutional neural networks. Original scientific paper. https://doi.org/10.24867/GRID-2018-p56

  42. Biswas, S., Sil, J., Maity, S.P.: On prediction error compressive sensing image reconstruction for face recognition. Comput. Electr. Eng. 70, 722–735 (2017)

    Article  Google Scholar 

  43. Beirami, B.A., Mokhtarzade, M.: Ensemble of Log-Euclidean kernel SVM based on covariance descriptors of multiscale gabor features for face recognition. Int. J. Eng. Trans. B Appl. 35(11), 2065–2071 (2022)

    Google Scholar 

  44. Elad, M., Goldenberg, R., Kimmel, R.: Low Bit-rate compression of facial images. IEEE Trans. Image Process. 16, 2379–2383 (2007)

    Article  MathSciNet  Google Scholar 

  45. Qiuyu, Z., Suozhong, W.: Color personal ID photo compression based on object segmentation. In: IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, China (2005)

  46. Bala, J., Huang, J., Vafaie, H.: Hybrid learning using genetic algorithms and decision trees for pattern classification. In: Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, vol. 1, pp. 719–724 (2012)

  47. Sun, Y., Yin, L.: A genetic algorithm based feature selection approach for 3D face recognition. In: Biometric Consortium Conference, USA (2005)

  48. Liu, C., Wechsler, H.: Evolutionary pursuit and its application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 22(6), 570–582 (2000)

    Article  Google Scholar 

  49. https://www.researchgate.net/figure/Example-images-of-CIE-database_fig3_343240268

  50. Kahu, S.Y., Bhurchandi, K.M.: JPEG-based variable block-size image compression using CIE La*b* color space. KSII Trans. Internet Inf. Syst. 12(10) (2018)

  51. Moin, M.S., Sepas-Moghaddam, A.: JPEG compressed domain face recognition: different stages and different features. Int. J. Inf. Commun. Technol. Res. 4(4), 13–23 (2012)

    Google Scholar 

  52. Pantanowitz, L., Liu, C., Huang, Y., Guo, H., Rohde, G.K.: Impact of altering various image parameters on human epidermal growth factor receptor 2 image analysis data quality. J. Pathol. Inform. 8, 39 (2017)

    Article  Google Scholar 

  53. Giuliani, D.: Metaheuristic Algorithms Applied to Color Image Segmentation on HSV Space. J. Imaging 8(1), 6 (2022)

    Article  Google Scholar 

  54. Mobahi, H., Rao, S.R., Yang, A.Y., Shankar, S., Ma, S.Y.: Segmentation of natural images by texture and boundary compression. Int. J. Comput. Vis. 95(1), 86–98 (2010)

    Article  Google Scholar 

  55. Jin, Y., Lee, H.J.: A block-based pass-parallel SPIHT algorithm. IEEE Trans. Circuits Syst. Video Technol 22(7), 1064–1075 (2012)

    Article  Google Scholar 

  56. Xiang, T., Qu, J., Xiao: Joint SPIHT compression and selective encryption. Appl. Soft Comput. 21, 159–170 (2014)

    Article  Google Scholar 

  57. https://jpeg.org/jpegls/

  58. Kumar, M., Powduri, P., Reddy, A.: An RGB image encryption using diffusion process associated with chaotic map. J. Inf. Secur. Appl. 21, 20–30 (2014)

    Google Scholar 

  59. Tang, Z., Xiaocheng, Wu., Bin, Fu., Chen, W., Feng, H.: Fast face recognition based on fractal theory. Appl. Math. Comput. 321, 721–730 (2018)

    MathSciNet  MATH  Google Scholar 

  60. Satone, M., Kharate, G.: Feature selection using genetic algorithm for face recognition based on PCA, wavelet and SVM. Int. J. Electr. Eng. Inform. 6(1), 39 (2014)

    Google Scholar 

  61. Poon, B., Amin, M.A., Yan, H.: Performance evaluation and comparison of PCA Based humanface recognition methods for distorted images. Int. J. Mach. Learn. Cybern. 2, 245–259 (2011)

    Article  Google Scholar 

  62. Microscopy; Findings in Microscopy Reported from Changchun University of Science and Technology (A Medical Image Compression and Reconstruction Method Based On Improved Principal Components Analysis). Sci. Lett. (2020)

  63. Timotius, I.K., Setyawan, I., Febrianto, A.: A face recognition between two person using kernel principal component analysis and support vector machines. Int. J. Electr. Eng. Inform. 2(1), 55–63 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors jointly contributed to the writing and revision of the manuscript and reviewed it.

Corresponding author

Correspondence to Gholamreza Ardeshir.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodadadi, R., Ardeshir, G. & Grailu, H. Variable bit allocation method based on meta-heuristic algorithms for facial image compression. Multimedia Systems 29, 3903–3930 (2023). https://doi.org/10.1007/s00530-023-01163-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-023-01163-1

Keywords

Navigation