Skip to main content
Log in

Face swapping detection based on identity spatial constraints with weighted frequency division

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

The generalization of face swapping detectors is necessary when applied to the practical applications. Although the most existing methods may achieve accuracy detection performance on the known forgeries, they fail to make the prediction when faced with unseen face manipulation methods. To alleviate the problem, we propose a novel and practical framework called Detection based on Identity Spatial Constraints with Weighted Frequency Division (DISC-WFD) through introducing the reference image, consisting of the backbone network, the shared Identity Semantic Encoder (ISE) and the corresponding Identity Spatial Constraint (ISC) branches. The ISE is utilized to measure the identity similarity between the input image and the reference image and generates identity spatial constraints. The constraints are imposed on ISC to focus on the high frequency and low-frequency identity-related areas for the discriminative information. The proposed method can significantly improve the performance and the generalization against the unseen manipulation methods. Furthermore, the cross-dataset experiments validate the superiority and the effectiveness of the DISC-WFD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anonymous: Deepfakes/faceswap: Deepfakes Software For All. https://github.com/deepfakes/faceswap. Accessed 2021-09-03

  2. Perov, I., Gao, D., Chervoniy, N., Liu, K., Marangonda, S., Umé, C., Dpfks, M., Facenheim, C.S., RP, L., Jiang, J., Zhang, S., Wu, P., Zhou, B., Zhang, W.: DeepFaceLab: integrated, flexible and extensible face-swapping framework (2021). https://github.com/iperov/DeepFaceLab

  3. Thies, J., Zollhöfer, M., Stamminger, M., Theobalt, C., Nießner, M.: Face2Face: Real-time face capture and reenactment of rgb videos. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2387–2395 (2016). https://doi.org/10.1109/CVPR.2016.262

  4. Zakharov, E., Shysheya, A., Burkov, E., Lempitsky, V.: Few-shot adversarial learning of realistic neural talking head models. In: ICCV (2019). https://doi.org/10.1109/ICCV.2019.00955

  5. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of stylegan. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8107–8116 (2020). https://doi.org/10.1109/CVPR42600.2020.00813

  6. Nirkin, Y., Keller, Y., Hassner, T.: FSGAN: subject agnostic face swapping and reenactment. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 7183–7192 (2019). https://doi.org/10.1109/ICCV.2019.00728

  7. Li, L., Bao, J., Yang, H., Chen, D., Wen, F.: Advancing high fidelity identity swapping for forgery detection. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5073–5082 (2020). https://doi.org/10.1109/CVPR42600.2020.00512

  8. Agarwal, S., Farid, H., Gu, Y., He, M., Nagano, K., Li, H.: Protecting world leaders against deep fakes. In: CVPRW (2019)

  9. Afchar, D., Nozick, V., Yamagishi, J., Echizen, I.: MesoNet: a compact facial video forgery detection network. In: 2018 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 1–7 (2018). https://doi.org/10.1109/WIFS.2018.8630761

  10. Rössler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., Niessner, M.: FaceForensics++: Learning to detect manipulated facial images. In: ICCV (2019). https://doi.org/10.1109/ICCV.2019.00009

  11. Li, Y., Lyu, S.: Exposing deepfake videos by detecting face warping artifacts. In: CVPRW (2019)

  12. Deepfakes. https://github.com/deepfakes/faceswap. Accessed: 2021-01-20

  13. Li, Y., Yang, X., Sun, P., Qi, H., Lyu, S.: Celeb-DF: A large-scale challenging dataset for deepfake forensics. In: CVPR (2020). https://doi.org/10.1109/CVPR42600.2020.00327

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  15. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019). https://doi.org/10.1109/CVPR.2019.00584

  16. Dufour, N., Gully, A.: Contributing Data to Deepfake Detection Research. https://ai.googleblog.com/2019/09/contributing-data-to-deepfake-detection.html. Accessed 2021-09-16

  17. Jiang, L., Li, R., Wu, W., Qian, C., Loy, C.C.: DeeperForensics-1.0: a large-scale dataset for real-world face forgery detection. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2886–2895 (2020). https://doi.org/10.1109/CVPR42600.2020.00296

  18. Korshunova, I., Shi, W., Dambre, J., Theis, L.: Fast face-swap using convolutional neural networks. In: ICCV (2017). https://doi.org/10.1109/ICCV.2017.397

  19. faceswap-GAN. https://github.com/shaoanlu/faceswap-GAN. Accessed: 2020-11-20

  20. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006). https://doi.org/10.1126/science.1127647. https://science.sciencemag.org/content/313/5786/504.full.pdf.

  21. Dong, J., Wang, Y., Lai, J., Xie, X.: Restricted black-box adversarial attack against deepfake face swapping (2022). arXiv preprint arXiv:2204.12347

  22. Xu, C., Zhang, J., Hua, M., He, Q., Yi, Z., Liu, Y.: Region-aware face swapping. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7632–7641 (2022)

  23. Xu, Z., Hong, Z., Ding, C., Zhu, Z., Han, J., Liu, J., Ding, E.: Mobilefaceswap: a lightweight framework for video face swapping (2022). arXiv preprint arXiv:2201.03808

  24. Matern, F., Riess, C., Stamminger, M.: Exploiting visual artifacts to expose deepfakes and face manipulations. In: WACVW (2019). https://doi.org/10.1109/WACVW.2019.00020

  25. Yang, X., Li, Y., Lyu, S.: Exposing deep fakes using inconsistent head poses. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8261–8265 (2019). https://doi.org/10.1109/ICASSP.2019.8683164

  26. Li, Y., Chang, M.-C., Lyu, S.: In ictu oculi: exposing AI created fake videos by detecting eye blinking. In: 2018 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 1–7 (2018). https://doi.org/10.1109/WIFS.2018.8630787

  27. Ciftci, U.A., Demir, I., Yin, L.: FakeCatcher: detection of synthetic portrait videos using biological signals. IEEE Trans. Pattern Anal. Mach. Intell., 1–1 (2020). https://doi.org/10.1109/TPAMI.2020.3009287

  28. Ciftci, U.A., Demir, I., Yin, L.: How do the hearts of deep fakes beat? deep fake source detection via interpreting residuals with biological signals. In: IJCB (2020). https://doi.org/10.1109/IJCB48548.2020.9304909

  29. Korshunov, P., Marcel, S.: Vulnerability assessment and detection of deepfake videos. In: 2019 International Conference on Biometrics (ICB), pp. 1–6 (2019). https://doi.org/10.1109/ICB45273.2019.8987375

  30. Yu, N., Davis, L., Fritz, M.: Attributing fake images to GANs: learning and analyzing GAN fingerprints. In: ICCV (2019). https://doi.org/10.1109/ICCV.2019.00765

  31. Marra, F., Gragnaniello, D., Verdoliva, L., Poggi, G.: Do GANs leave artificial fingerprints? In: MIPR (2019). https://doi.org/10.1109/MIPR.2019.00103

  32. Durall, R., Keuper, M., Keuper, J.: Watch your up-convolution: CNN based generative deep neural networks are failing to reproduce spectral distributions. In: CVPR (2020). https://doi.org/10.1109/CVPR42600.2020.00791

  33. Zhou, P., Han, X., Morariu, V.I., Davis, L.S.: Two-stream neural networks for tampered face detection. In: CVPRW (2017). https://doi.org/10.1109/CVPRW.2017.229

  34. Nguyen, H.H., Fang, F., Yamagishi, J., Echizen, I.: Multi-task learning for detecting and segmenting manipulated facial images and videos. In: BTAS (2019). https://doi.org/10.1109/BTAS46853.2019.9185974

  35. Dang, H., Liu, F., Stehouwer, J., Liu, X., Jain, A.K.: On the detection of digital face manipulation. In: CVPR (2020). https://doi.org/10.1109/CVPR42600.2020.00582

  36. Li, L., Bao, J., Zhang, T., Yang, H., Chen, D., Wen, F., Guo, B.: Face X-Ray for more general face forgery detection. In: CVPR (2020). https://doi.org/10.1109/CVPR42600.2020.00505

  37. Wang, X., Yao, T., Ding, S., Ma, L.: Face manipulation detection via auxiliary supervision. In: Yang, H., Pasupa, K., Leung, A.C.-S., Kwok, J.T., Chan, J.H., King, I. (eds.) Neural Information Processing, pp. 313–324. Springer, Cham (2020)

    Chapter  Google Scholar 

  38. Sabir, E., Cheng, J., Jaiswal, A., AbdAlmageed, W., Masi, I., Natarajan, P.: Recurrent convolutional strategies for face manipulation detection in videos. In: CVPRW (2019)

  39. Chen, P., Liu, J., Liang, T., Zhou, G., Gao, H., Dai, J., Han, J.: FSSPOTTER: spotting face-swapped video by spatial and temporal clues. In: 2020 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6 (2020). https://doi.org/10.1109/ICME46284.2020.9102914

  40. Chintha, A., Rao, A., Sohrawardi, S., Bhatt, K., Wright, M., Ptucha, R.: Leveraging edges and optical flow on faces for deepfake detection. In: IJCB (2020). https://doi.org/10.1109/IJCB48548.2020.9304936

  41. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: Arcface: additive angular margin loss for deep face recognition. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4685–4694 (2019). https://doi.org/10.1109/CVPR.2019.00482

  42. Li, Z., Liu, Y., Li, B., Hu, W., Zhou, X.: Adaptive coarse-to-fine interactor for multi-scale object detection. In: 2021 International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2021). IEEE

  43. Li, Z., Liu, Y., Li, B., Hu, W., Zhang, H.: Dsic: dynamic sample-individualized connector for multi-scale object detection. In: 2021 IEEE International Conference on Multimedia and Expo (ICME) (2021)

  44. Li, Z., Liu, Y., Li, B., Feng, B., Wu, K., Peng, C., Hu, W.: Sdtp: Semantic-aware decoupled transformer pyramid for dense image prediction. IEEE Trans. Circ. Syst. Video Technol. (2022)

  45. Rössler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., Niessner, M.: FaceForensics++: learning to detect manipulated facial images. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 1–11 (2019). https://doi.org/10.1109/ICCV.2019.00009

  46. Kowalski, M.: MarekKowalski/FaceSwap: 3D face swapping implemented in python. https://github.com/MarekKowalski/FaceSwap. Accessed 2021-09-23

  47. Li, Y., Yang, X., Sun, P., Qi, H., Lyu, S.: Celeb-DF: a large-scale challenging dataset for deepfake forensics. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3204–3213 (2020). https://doi.org/10.1109/CVPR42600.2020.00327

  48. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  49. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5686–5696 (2019). https://doi.org/10.1109/CVPR.2019.00584

  50. Chen, S., Liu, Y., Gao, X., Han, Z.: Mobilefacenets: efficient cnns for accurate real-time face verification on mobile devices. In: Zhou, J., Wang, Y., Sun, Z., Jia, Z., Feng, J., Shan, S., Ubul, K., Guo, Z. (eds.) Biomet. Recogn., pp. 428–438. Springer, Cham (2018)

    Chapter  Google Scholar 

  51. Deng, J., Guo, J., Ververas, E., Kotsia, I., Zafeiriou, S.: RetinaFace: single-shot multi-level face localisation in the wild. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5202–5211 (2020). https://doi.org/10.1109/CVPR42600.2020.00525

  52. Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. TPAMI 13(4), 376–380 (1991). https://doi.org/10.1109/34.88573

    Article  Google Scholar 

  53. Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. IEEE Trans. Pattern Anal. Mach. Intell. 13(4), 376–380 (1991). https://doi.org/10.1109/34.88573

    Article  Google Scholar 

  54. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2015)

  55. Feng, D., Lu, X., Lin, X.: Deep detection for face manipulation. In: ICONIP (2020)

  56. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1800–1807 (2017). https://doi.org/10.1109/CVPR.2017.195

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2020AAA0106800), the National Natural Science Foundation of China (No. 62192785, Grant No.61902401, No. 61972071, No. U1936204, No. 62122086, No. 62036011, No. 62192782 and No. 61721004), the Beijing Natural Science Foundation No. M22005, the CAS Key Research Program of Frontier Sciences (Grant No. QYZDJ-SSW-JSC040). The work of Bing Li was also supported by the Youth Innovation Promotion Association, CAS.

Author information

Authors and Affiliations

Authors

Contributions

All authors have the abundant discussion and have reviewed the manuscript carefully.

Corresponding author

Correspondence to Zekun Li.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ai, Z., Peng, C., Jiang, J. et al. Face swapping detection based on identity spatial constraints with weighted frequency division. Multimedia Systems 29, 627–640 (2023). https://doi.org/10.1007/s00530-022-01007-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-022-01007-4

Keywords

Navigation