Skip to main content
Log in

Automatic segmentation of melanoma skin cancer using transfer learning and fine-tuning

  • Special Issue Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

The massive use of multimedia technologies has enabled the exploration of information in many data such as texts, audio, videos, and images. Computational methods are being developed for several purposes such as monitoring, security, business, and even health through the automatic diagnosis of diseases by medical images. Among these diseases, we have melanoma skin cancer. Melanoma is a skin cancer that causes a large number of fatalities worldwide. Several methods for the automatic diagnosis of melanoma in dermoscopic images have been developed. For these methods to be more efficient, it is essential to isolate the lesion region. This study used a melanoma segmentation method based on U-net and LinkNet deep learning networks combined with transfer learning and fine-tuning techniques. Additionally, we evaluate the model’s ability to learn to segment the disease or just the dataset by combining datasets. The experiments were carried out in three datasets (PH2, ISIC 2018, and DermIS) and obtained promising results, emphasizing the U-net that obtained an average Dice of 0.923 in the PH2 dataset, Dice =  0.893 in ISIC 2018, and Dice = 0.879 in the DermIS dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The codes, databases, and information for using the proposed methodology are available in a public repository: https://github.com/rafaluz/skin-seg-unet-linknet.

References

  1. Memon, M.H., Khan, A., Li, J.-P., Shaikh, R.A., Memon, I., Deep, S.: Content based image retrieval based on geo-location driven image tagging on the social web, in: 2014 11th International Computer Conference on Wavelet Actiev Media Technology and Information Processing (ICCWAMTIP), IEEE, 2014, pp. 280–283

  2. Memon, I.: Authentication user’s privacy: An integrating location privacy protection algorithm for secure moving objects in location based services. Wireless Personal Communications 82(3), 1585–1600 (2015)

  3. Memon, M.H., Li, J.-P., Memon, I., Arain, Q.A.: Geo matching regions: multiple regions of interests using content based image retrieval based on relative locations. Multimedia Tools Appl. 76(14), 15377–15411 (2017)

    Article  Google Scholar 

  4. Said, Y., Atri, M.: Efficient and high-performance pedestrian detector implementation for intelligent vehicles. IET Intell. Trans. Syst. 10(6), 438–444 (2016)

    Article  Google Scholar 

  5. Arain, Q.A., Memon, H., Memon, I., Memon, M.H., Shaikh, R.A., Mangi, F.A.: Intelligent travel information platform based on location base services to predict user travel behavior from user-generated gps traces. Int. J. Comput. Appl. 39(3), 155–168 (2017)

    Google Scholar 

  6. Amin, J., Sharif, A., Gul, N., Anjum, M.A., Nisar, M.W., Azam, F., Bukhari, S.A.C.: Integrated design of deep features fusion for localization and classification of skin cancer. Pattern Recognit. Lett. 131, 63–70 (2020)

    Article  Google Scholar 

  7. Al Nazi, Z., Abir, T.A.: Automatic skin lesion segmentation and melanoma detection: Transfer learning approach with u-net and dcnn-svm, in: Proceedings of International Joint Conference on Computational Intelligence, Springer, 2020, pp. 371–381

  8. WHO, World Health Organization, https://www.who.int/news-room/q-a-detail/ultraviolet-(uv)-radiation-and-skin-cancer, online; accessed 04 August 2020 (2020)

  9. Haenssle, H.A., Fink, C., Schneiderbauer, R., Toberer, F., Buhl, T., Blum, A., Kalloo, A., Hassen, A.B.H., Thomas, L., Enk, A., et al.: Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann. Oncol. 29(8), 1836–1842 (2018)

    Article  Google Scholar 

  10. Argenziano, G., Soyer, H.P.: Dermoscopy of pigmented skin lesions-a valuable tool for early. Lancet Oncol. 2(7), 443–449 (2001)

    Article  Google Scholar 

  11. Moura, N., Veras, R., Aires, K., Machado, V., Silva, R., Araújo, F., Claro, M.: Abcd rule and pre-trained cnns for melanoma diagnosis. Multimedia Tools Appl. 78(6), 6869–6888 (2019)

    Article  Google Scholar 

  12. Barata, C., Ruela, M., Francisco, M., Mendonça, T., Marques, J.S.: Two systems for the detection of melanomas in dermoscopy images using texture and color features. IEEE Syst. J. 8(3), 965–979 (2013)

    Article  Google Scholar 

  13. Tang, P., Liang, Q., Yan, X., Xiang, S., Sun, W., Zhang, D., Coppola, G.: Efficient skin lesion segmentation using separable-unet with stochastic weight averaging. Comput. Methods Programs Biomed. 178, 289–301 (2019)

    Article  Google Scholar 

  14. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation, in: International Conference on Medical image computing and computer-assisted intervention, Springer, 2015, pp. 234–241

  15. Chaurasia, A., Culurciello, E., Linknet: Exploiting encoder representations for efficient semantic segmentation, in, : IEEE Visual Communications and Image Processing (VCIP). IEEE 2017, 1–4 (2017)

  16. Hosny, K.M., Kassem, M.A., Foaud, M.M.: Classification of skin lesions using transfer learning and augmentation with alex-net. PloS one 14(5), e0217293 (2019)

  17. Yakubovskiy, P.: Segmentation models, https://github.com/qubvel/segmentation_models (2019)

  18. Keras, Transfer learning & fine-tuning, https://keras.io/guides/transfer_learning, online; accessed 20 October 2020 (2020)

  19. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybernet. 9(1), 62–66 (1979)

    Article  Google Scholar 

  20. MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations, in: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, Vol. 1, Oakland, CA, USA, 1967, pp. 281–297

  21. Fan, H., Xie, F., Li, Y., Jiang, Z., Liu, J.: Automatic segmentation of dermoscopy images using saliency combined with otsu threshold. Comput. Biol. Med. 85, 75–85 (2017)

    Article  Google Scholar 

  22. Ahn, E., Kim, J., Bi, L., Kumar, A., Li, C., Fulham, M., Feng, D.D.: Saliency-based lesion segmentation via background detection in dermoscopic images. IEEE J. Biomed. Health Informatics 21(6), 1685–1693 (2017)

    Article  Google Scholar 

  23. Al-Masni, M.A., Al-Antari, M.A., Choi, M.-T., Han, S.-M., Kim, T.-S.: Skin lesion segmentation in dermoscopy images via deep full resolution convolutional networks. Comput. Methods Programs Biomed. 162, 221–231 (2018)

    Article  Google Scholar 

  24. Aljanabi, M., Özok, Y.E., Rahebi, J., Abdullah, A.S.: Skin lesion segmentation method for dermoscopy images using artificial bee colony algorithm. Symmetry 10(8), 347 (2018)

    Article  Google Scholar 

  25. Peng, Y., Wang, N., Wang, Y., Wang, M.: Segmentation of dermoscopy image using adversarial networks. Multimedia Tools Appl. 78(8), 10965–10981 (2019)

    Article  Google Scholar 

  26. Goyal, M., Oakley, A., Bansal, P., Dancey, D., Yap, M.H.: Skin lesion segmentation in dermoscopic images with ensemble deep learning methods. IEEE Access 8, 4171–4181 (2019)

    Article  Google Scholar 

  27. Khan, M.Q., Hussain, A., Rehman, S.U., Khan, U., Maqsood, M., Mehmood, K., Khan, M.A.: Classification of melanoma and nevus in digital images for diagnosis of skin cancer. IEEE Access 7, 90132–90144 (2019)

    Article  Google Scholar 

  28. Abraham, N., Khan, N.M.: A novel focal tversky loss function with improved attention u-net for lesion segmentation, in, : IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). IEEE 2019, 683–687 (2019)

  29. Santos, E., Veras, R., Miguel, H., Aires, K., Claro, M.L., Junior, G.B.: A skin lesion semi-supervised segmentation method, in: 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), IEEE, 2020, pp. 33–38

  30. Guo, X., Chen, Z., Yuan, Y.: Complementary network with adaptive receptive fields for melanoma segmentation, in, : IEEE 17th International Symposium on Biomedical Imaging (ISBI). IEEE 2020, 2010–2013 (2020)

  31. Araújo, R.L., Ricardo de Andrade, L.R., Rodrigues, J.J., e Silva, R.R.: Automatic segmentation of melanoma skin cancer using deep learning, in: 2020 IEEE International Conference on E-health Networking, Application & Services (HEALTHCOM), IEEE, 2021, pp. 1–6

  32. Al-Masni, M.A., Al-Antari, M.A., Park, J.-M., Gi, G., Kim, T.-Y., Rivera, P., Valarezo, E., Choi, M.-T., Han, S.-M., Kim, T.-S.: Simultaneous detection and classification of breast masses in digital mammograms via a deep learning yolo-based cad system. Comput. Methods Programs Biomed. 157, 85–94 (2018)

    Article  Google Scholar 

  33. Mendonca, T., Celebi, M., Mendonca, T., Marques, J.: Ph2: A public database for the analysis of dermoscopic images, in: Dermoscopy image analysis, CRC Press, 2015

  34. Codella, N., Rotemberg, V., Tschandl, P., Celebi, M.E., Dusza, S., Gutman, D., Helba, B., Kalloo, A., Liopyris, K., Marchetti, M., et al.: Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic), arXiv preprint arXiv:1902.03368

  35. Tschandl, P., Rosendahl, C., Kittler, H.: The ham10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 5, 180161 (2018)

    Article  Google Scholar 

  36. DermIS, Dermatology information system, https://www.dermis.net/dermisroot/en/home/index.htm, online; accessed 25 June 2020 (2020)

  37. Bi, L., Kim, J., Ahn, E., Kumar, A., Feng, D., Fulham, M.: Step-wise integration of deep class-specific learning for dermoscopic image segmentation. Pattern Recognit. 85, 78–89 (2019)

    Article  Google Scholar 

  38. Imagenet, About imagenet, http://www.image-net.org/about-overview, online; accessed 22 October 2020 (2020)

  39. Zeng, C., Zhu, Z., Liu, G., Hu, W., Wang, X., Yang, C., Wang, H., He, D., Tan, J.: Randomized, double-blind, placebo-controlled trial of oral enalapril in patients with neurally mediated syncope. Am. Heart J. 136(5), 852–858 (1998)

    Article  Google Scholar 

  40. Provost, F., Domingos, P.: Well-trained pets: Improving probability estimation trees, Raport instytutowy IS-00-04, Stern School of Business, New York University

  41. Ginsberg, J.R., Young, T.P.: Measuring association between individuals or groups in behavioural studies. Animal Behaviour 44(1), 377–379 (1992)

    Article  Google Scholar 

  42. Hamers, L., et al.: Similarity measures in scientometric research: The jaccard index versus salton’s cosine formula. Information Processing and Management 25(3), 315–18 (1989)

  43. Burman, P.: A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods. Biometrika 76(3), 503–514 (1989)

    Article  MathSciNet  Google Scholar 

  44. Chakkaravarthy, A.P., Chandrasekar, A.: Automatic detection and segmentation of melanoma using fuzzy c-means, in: 2019 Fifth International Conference on Science Technology Engineering and Mathematics (ICONSTEM), Vol. 1, IEEE, 2019, pp. 132–136

  45. Dey, N., Rajinikanth, V., Ashour, A.S., Tavares, J.M.R.: Social group optimization supported segmentation and evaluation of skin melanoma images. Symmetry 10(2), 51 (2018)

    Article  Google Scholar 

  46. Rastrelli, M., Tropea, S., Rossi, C.R., Alaibac, M.: Melanoma: epidemiology, risk factors, pathogenesis, diagnosis and classification. vivo 28(6), 1005–1011 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romuere R. V. e Silva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araújo, R.L., Araújo, F.H.D.d. & Silva, R.R.V.e. Automatic segmentation of melanoma skin cancer using transfer learning and fine-tuning. Multimedia Systems 28, 1239–1250 (2022). https://doi.org/10.1007/s00530-021-00840-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-021-00840-3

Keywords

Navigation