Skip to main content
Log in

Study of transmission system for compressed and encrypted image

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

An evolutionary asymmetric cryptosystem is proposed using QWT + SPIHT and AES. This system is based on the Quincunx wavelet transform coupled with progressive encoder SPIHT (QWT + SPIHT) and encrypted by the algorithm “Advanced Encryption Standard” (AES). The numerical results demonstrate that the proposed system is feasible and effective for encryption. The characteristics of the proposed transmission system are as follows. First, the progressive SPIHT encoder performs partial encryption on the compressed image and hash of the image to obtain secure deduplication of the image. Second, the use of the AES encryption algorithm can greatly improve security, such as an attack without phase recovery and information disclosure. The proposed method effectively prevents information leakage. However, adopting a Quincunx wavelet transformation reduces the amount of data, which is more conducive to data transmission and increases the practicability of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Haouari, B.: 3D medical image compression using the quincunx wavelet coupled with SPIHT. Indonesian J. Electric Eng. Comput. Sci. 18, 821 (2020)

    Article  Google Scholar 

  2. Daemen, J., Rijmen, V.: The Design of Rijndael: AES-the Advanced Encryption Standard. Springer, New York (2013)

    MATH  Google Scholar 

  3. Omrani, T., Becheikh, R., Rhouma, R.: Towards a real-time image/video cryptosystem: problems, analysis and recommendations. Multimed Syst 1, 1–24 (2020)

    Google Scholar 

  4. AES. In: van Tilborg HCA, Jajodia S (eds) Encyclopedia of Cryptography and Security, pp 26–26. Springer, Boston (2011)

  5. Benlabbes, H., Benahmed, K., Beladgham, M., Abdelmalik, A.T., Younes, K.: A modified QWT for image transmission in WMSN: study and experimental. IJCSNS 17, 70 (2017)

    Google Scholar 

  6. Vetterli, M., Kovacevic, J.: Wavelets and Subband Coding. Prentice-Hall, London (1995)

    MATH  Google Scholar 

  7. Chappelier, V.: Progressive Coding of Images by Directed Wavelet. Rennes University, Rennes (2005)

    Google Scholar 

  8. Lee, L., Oppenheim, A.V.: Properties of approximate Parks-McClellan filters. IEEE Int. Conf. Acoust. Speech Signal Process. 1997, 2165–2168 (1997)

    Google Scholar 

  9. Miaou, S.-G., Chen, S.-T., Chao, S.-N.: Wavelet-based lossy-to-lossless medical image compression using dynamic VQ and SPIHT coding. Biomed. Eng. Appl. Basis Commun. 15, 235–242 (2003)

    Article  Google Scholar 

  10. Aggarwal, A., Kumar, M., Rawat, T.K., Upadhyay, D.K.: Optimal design of 2D FIR filters with quadrantally symmetric properties using fractional derivative constraints. Circuits Syst. Signal Process. 35, 2213–2257 (2016)

    Article  Google Scholar 

  11. Feilner, M., Van De Ville, D., Unser, M.: An orthogonal family of quincunx wavelets with continuously adjustable order. IEEE Trans. Image Process. 14, 499–510 (2005)

    Article  MathSciNet  Google Scholar 

  12. Van De Ville, D., Blu, T., Unser, M.: On the multidimensional extension of the quincunx subsampling matrix. IEEE Signal Process. Lett. 12, 112–115 (2005)

    Article  Google Scholar 

  13. Said, A., Pearlman, W.A.: A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans. Circuits Syst. Video Technol. 6, 243–250 (1996)

    Article  Google Scholar 

  14. Tuna, C., Mirmahboub, B., Merciol, F., Lefèvre, S.: Component trees for image sequences and streams. Pattern Recogn. Lett. 129, 255–262 (2020)

    Article  Google Scholar 

  15. Beladgham, M., Habchi, Y., Taleb-Ahmed, A.: Medical video compression using bandelet based on lifting scheme and SPIHT coding: in search of high visual quality. Inform. Med. Unlocked 17, 100244 (2019)

    Article  Google Scholar 

  16. Abdullah, A.M.: Advanced encryption standard (AES) algorithm to encrypt and decrypt data. Cryptogr. Netw. Secur. 16, 1 (2017)

    Google Scholar 

  17. Gueron, S., Feghali, W. K., Gopal, V., Makaram, R., Dixon, M. G., Chennupaty, S., Kounavis, M. E.: Flexible architecture and instruction for advanced encryption standard (AES) (ed: Google Patents) (2020)

  18. Toughi, S., Fathi, M.H., Sekhavat, Y.A.: An image encryption scheme based on elliptic curve pseudo random and advanced encryption system. Signal Process. 141, 217–227 (2017)

    Article  Google Scholar 

  19. Belazi, A., Khan, M., El-Latif, A.A.A., Belghith, S.: Efficient cryptosystem approaches: S-boxes and permutation–substitution-based encryption. Nonlinear Dyn. 87, 337–361 (2017)

    Article  Google Scholar 

  20. Khoirom, M.S., Laiphrakpam, D.S., Themrichon, T.: Cryptanalysis of multimedia encryption using elliptic curve cryptography. Optik 168, 370–375 (2018)

    Article  Google Scholar 

  21. Geisler, W.S., Banks, M.S.: Visual performance. In: Bass, M. (ed.) Handbook of Optics. McGraw-Hill, London (1995)

    Google Scholar 

  22. Watson, A.B., Kreslake, L.: Measurement of Visual Impairment Scales for Digital Video. Human Vision, Visual Processing, and Digital Display. Proc. SPIE 4299, 1 (2001)

    Article  Google Scholar 

  23. Sara, U., Akter, M., Uddin, M.S.: Image quality assessment through FSIM, SSIM, MSE and PSNR—a comparative study. J. Comput. Commun. 7, 8–18 (2019)

    Article  Google Scholar 

  24. Gonzalez, R.C., Woods, R.E., Eddins, S.L.: Standard” test images (a set of images found frequently in the literature: Lena, peppers, cameraman, lake, etc., all in uncompressed tif format and of the same 512 x 512 size)

  25. Wu, C., Hu, K.-Y., Wang, Y., Wang, J., Wang, Q.-H.: Scalable asymmetric image encryption based on phase-truncation in cylindrical diffraction domain. Opt. Commun. 448, 26–32 (2019)

    Article  Google Scholar 

  26. Sree, P.S.J., Kumar, P., Siddavatam, R., Verma, R.: Salt-and-pepper noise removal by adaptive median-based lifting filter using second-generation wavelets. SIViP 7(1), 111–118 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haouari Benlabbes.

Additional information

Communicated by Y. Zhang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benlabbes, H. Study of transmission system for compressed and encrypted image. Multimedia Systems 27, 471–482 (2021). https://doi.org/10.1007/s00530-020-00737-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-020-00737-7

Keywords

Navigation