Skip to main content
Log in

An image classification model based on transfer learning for ulcerative proctitis

  • Special Issue Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

Ulcerative colitis (UC) can be classified as proctitis, left-sided colitis or pancolitis, usually with rectal involvement at the beginning. Mucosal carcinogenesis is one of the most severe complications of UC. Persistent inflammation of the rectal mucosa may be an essential cause of mucosal cancer, thus the detection of rectal inflammation is of great significance. In this paper, we propose a transfer learning model to classify enteroscopy images to achieve adequate detection of ulcerative proctitis. First, with the support of senior doctors, a dataset of ulcerative proctitis is created with 1450 endoscopic images. Then, with trained in the dataset, a new multi-model fusion network is proposed to classify ulcerative proctitis images. The proposed model combines three pre-trained models which are Xception, ResNet and DenseNet, and these pre-trained models are used to extract features from the images, then the extracted features are fed into a fully connected layer to predict the label of the input image. Experimental results show that, compared with other models, the proposed model has better performance, achieving the classification accuracy of 97.93%, the sensitivity of 99% and the specificity of 99%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. De Chambrun, G.P., Tassy, B., Kollen, L., Dufour, G., Valats, J.C., Bismuth, M., Funakoshi, N., Panaro, F., Blanc, P.: Refractory ulcerative proctitis: How to treat it? Best Pract. Res. Clin. Gastroenterol. 32–33, 49–57 (2018)

    Article  Google Scholar 

  2. Ordás, I., Eckmann, L., Talamini, M., Baumgart, D.C., Sandborn, W.J.: Ulcerative colitis. The Lancet 380(9853), 1606–1619 (2012)

    Article  Google Scholar 

  3. Schroeder, K.W., Tremaine, W.J., Ilstrup, D.M.: Coated oral 5-aminosalicylic acid therapy for mildly to moderately active ulcerative colitis. N. Engl. J. Med. 317(26), 1625–1629 (1987)

    Article  Google Scholar 

  4. Ozawa, T., Ishihara, S., Fujishiro, M., Saito, H., Kumagai, Y., Shichijo, S., Aoyama, K., Tada, T.: Novel computer-assisted diagnosis system for endoscopic disease activity in patients with ulcerative colitis. Gastrointest. Endosc. 89(2), 416–421 (2019)

    Article  Google Scholar 

  5. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  6. Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., Cui, C., Corrado, G., Thrun, S., Dean, J.: A guide to deep learning in healthcare. Nat. Med. 25(1), 24–29 (2019)

    Article  Google Scholar 

  7. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  8. Deng, J., Dong, W., Socher, R., Li, L., Kai, Li., Li, F.F.: Imagenet: a large-scale hierarchical image database. In: IEEE Conf. on Computer Vision and Pattern Recognition, pp. 248–255 (2009)

  9. Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., Thrun, S.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115–118 (2017)

    Article  Google Scholar 

  10. Amirreza, M., Gerald, S., Chunliang, W., Georg, D., Rupert, E., Isabella, E.: Transfer learning using a multi-scale and multi-network ensemble for skin lesion classification. Comput. Meth. Prog. Biomed. 193, 105475 (2020)

    Article  Google Scholar 

  11. Kooi, T., Litjens, G., Van Ginneken, B., Gubern-Mérida, A., Sánchez, C.I., Mann, R., Den Heeten, A., Karssemeijer, N.: Large scale deep learning for computer aided detection of mammographic lesions. Med. Image Anal. 35, 303–312 (2017)

    Article  Google Scholar 

  12. Pierrick, C., Boris, M., Michaël, C., Rémi, G., Baudouin, D.S., Vinh-Thong, T., Vincent, L., José, V.M.: AssemblyNet: a large ensemble of CNNs for 3D whole brain MRI segmentation. NeuroImage 219, 117026 (2020)

    Article  Google Scholar 

  13. Wang, Y., Zu, C., Ma, Z., et al.: Patch-wise label propagation for MR brain segmentation based on multi-atlas images. Multimed. Syst. 25, 73–81 (2019)

    Article  Google Scholar 

  14. Chatterjee, I., Kumar, V., Rana, B., et al.: Identification of changes in grey matter volume using an evolutionary approach: an MRI study of schizophrenia. Multimed. Syst. 26, 383–396 (2020)

    Article  Google Scholar 

  15. De Fauw, J., Ledsam, J.R., Romera-Paredes, B., Nikolov, S., Tomasev, N., Blackwell, S., Askham, H., Glorot, X., O’Donoghue, B., Visentin, D., van den Driessche, G., Lakshminarayanan, B., Meyer, C., Mackinder, F., Bouton, S., Ayoub, K., Chopra, R., King, D., Karthikesalingam, A.: Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat. Med. 24(9), 1342–1350 (2018)

    Article  Google Scholar 

  16. Mehta, N., Lee, C., Mendonça, L., Raza, K., Braun, P., Duker, J., Waheed, N., Lee, A.: Model-to-Data approach for deep learning in optical coherence tomography intraretinal fluid segmentation. JAMA Ophthalmol. 138, 1017–1024 (2020)

    Article  Google Scholar 

  17. Xi, X., Meng, X., Yang, L., et al.: Automated segmentation of choroidal neovascularization in optical coherence tomography images using multi-scale convolutional neural networks with structure prior. Multimed. Syst. 25, 95–102 (2019)

    Article  Google Scholar 

  18. Cireşan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Mitosis detection in breast cancer histology images with deep neural networks. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2013, Springer, Berlin, Heidelberg, pp. 411–418 (2013)

  19. Catherine, P.J., Yijiang, C., Andrew, R.J., Matthew, B.P., Clarissa, A.C., Miroslav, S., Jeffrey, B.H., Jarcy, Z., Stephen, M.H., John, O.T., Paula, T., John, R.S., Laura, B., Anant, M.: Development and evaluation of deep learning-based segmentation of histologic structures in the kidney cortex with multiple histologic stains. Kidney Int. (2020). https://doi.org/10.1016/j.kint.2020.07.044

    Article  Google Scholar 

  20. Horie, Y., Yoshio, T., Aoyama, K., Yoshimizu, S., Horiuchi, Y., Ishiyama, A., Hirasawa, T., Tsuchida, T., Ozawa, T., Ishihara, S., Kumagai, Y., Fujishiro, M., Maetani, I., Fujisaki, J., Tada, T.: Diagnostic outcomes of esophageal cancer by artificial intelligence using convolutional neural networks. Gastrointest. Endosc. 89(1), 25–32 (2019)

    Article  Google Scholar 

  21. Shichijo, S., Nomura, S., Aoyama, K., Nishikawa, Y., Miura, M., Shinagawa, T., Takiyama, H., Tanimoto, T., Ishihara, S., Matsuo, K., Tada, T.: Application of convolutional neural networks in the diagnosis of helicobacter pylori infection based on endoscopic images. EBioMedicine 25, 106–111 (2017)

    Article  Google Scholar 

  22. Nakashima, H., Kawahira, H., Kawachi, H., Sakaki, N.: Endoscopic three-categorical diagnosis of Helicobacter pylori infection using linked color imaging and deep learning: a single-center prospective study (with video). Gastric. Cancer 23, 1033–1040 (2020)

    Article  Google Scholar 

  23. Hirasawa, T., Aoyama, K., Tanimoto, T., Ishihara, S., Shichijo, S., Ozawa, T., Ohnishi, T., Fujishiro, M., Matsuo, K., Fujisaki, J., Tada, T.: Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images. Gastric Cancer 21(4), 653–660 (2018)

    Article  Google Scholar 

  24. Ueyama, H., Kato, Y., Akazawa, Y., Yatagai, N., Komori, H., Takeda, T., Matsumoto, K., Ueda, K., Matsumoto, K., Hojo, M., Yao, T., Nagahara, A., Tada, T.: Application of artificial intelligence using a convolutional neural network for diagnosis of early gastric cancer based on magnifying endoscopy with narrow-band imaging. J. Gastroen, Hepatol (2020). https://doi.org/10.1111/jgh.15190

    Book  Google Scholar 

  25. Cogan, T., Cogan, M., Tamil, L.: Mapgi: Accurate identification of anatomical landmarks and diseased tissue in gastrointestinal tract using deep learning. Comput. Biol. Med. 111, 103351 (2019)

    Article  Google Scholar 

  26. Bopanna, S., Ananthakrishnan, A.N., Kedia, S., Yajnik, V., Ahuja, V.: Risk of colorectal cancer in Asian patients with ulcerative colitis: a systematic review and meta-analysis. Lancet Gastroenterol. 2(4), 269–276 (2017)

    Article  Google Scholar 

  27. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: 2017 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 1251–1258 (2017)

  28. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Computer Vision – ECCV 2016, Springer International Publishing, Cham, pp. 630–645 (2016)

  29. Huang, G., Liu, Z., Van, Der Maaten, L., Weinberger K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269 (2017)

  30. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: 2016 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 2818–2826 (2016)

  31. Abd Ghani, M.K., Mohammed, M.A., Arunkumar, N., Mostafa, S.A., Ibrahim, D.A., Abdullah, M.K., Jaber, M.M., Abdulhay, E., Ramirez-Gonzalez, G., Burhanuddin, M.A.: Decision-level fusion scheme for nasopharyngeal carcinoma identification using machine learning techniques. Neural Comput. Appl. 32(3), 625–638 (2020)

    Article  Google Scholar 

  32. Zeng, F., Fang, G., Yao, L.: A deep neural network for identifying dna n4-methylcytosine sites. Front. Genet. 11, 209 (2020)

    Article  Google Scholar 

  33. Lu, X., Wang, X., Ding, L., Li, J., Gao, Y., He, K.: frDriver: a functional region driver identification for protein sequence. IEEE/ACM Trans. Comput. Biol. Bioinform. (2020). https://doi.org/10.1109/TCBB.2020.3020096

    Article  Google Scholar 

  34. Xinguo, L., Qian, X., Li, X., Miao, Q., Peng, Shaoliang: DMCM: a data-adaptive mutation clustering method to identify cancer-related mutation clusters. Bioinformatics 35(3), 389–397 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoheng Deng or Guanghui Lian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, F., Li, X., Deng, X. et al. An image classification model based on transfer learning for ulcerative proctitis . Multimedia Systems 27, 627–636 (2021). https://doi.org/10.1007/s00530-020-00722-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-020-00722-0

Keywords

Navigation