Multiple player tracking in soccer videos: an adaptive multiscale sampling approach

  • Wonjun Kim
  • Sung-Won Moon
  • Jiwon Lee
  • Do-Won Nam
  • Chanho Jung
Regular Paper
  • 2 Downloads

Abstract

Visual tracking is an essential technique in computer vision. Even though the notable improvement has been achieved during last few years, tracking multiple objects still remains as a challenging task. In this paper, a novel method for tracking multiple players in soccer videos, which include severe occlusions between players and nonlinear motions by their complex interactions, is introduced. Specifically, we first extract moving objects (i.e., players) by refining results of background subtraction via the edge information obtained from the frame differencing result. Then, we conduct multiscale sampling in foreground regions, which are spatially close to each tracked player, and subsequently computing the dissimilarity between sampled image blocks and each tracked player. Based on the best-matched case, the state of each tracked player (e.g., center position, color, etc.) is consistently updated using the online interpolation scheme. Experimental results in various soccer videos show the efficiency and robustness of our method compared to previous approaches introduced in the literature.

Keywords

Multiple object tracking Moving objects Multiscale sampling Online interpolation 

Notes

Acknowledgements

This research is supported by Ministry of Culture, Sports and Tourism (MCST) and Korea Creative Content Agency (KOCCA) in the Culture Technology (CT) Research & Development Program 2016 (R2016030044, Development of Context-Based Sport Video Analysis, Summarization, and Retrieval Technologies).

Supplementary material

Supplementary material 1 (avi 18533 KB)

References

  1. 1.
    Feris, R.S., Siddiquie, B., Petterson, J., Zhai, Y., Datta, A., Brown, L.M., Pankanti, S.: Large-scale vehicle detection, indexing, and search in urban surveillance videos. IEEE Trans. Multimed. 14(1), 28–42 (2012)CrossRefGoogle Scholar
  2. 2.
    Chu, C.-T., Hwang, J.-N., Pai, H.-I., Lan, K.-M.: Tracking human under occlusion based on adaptive multiple kernels with projected gradients. IEEE Trans. Multimed. 15(7), 1602–1615 (2013)CrossRefGoogle Scholar
  3. 3.
    Chang, C.-H., Wang, S.-C., Wang, C.-C.: Exploiting moving objects: multi-robot simultaneous localization and tracking. IEEE Trans. Auto. Sci. Eng. 13(2), 810–827 (2016)CrossRefGoogle Scholar
  4. 4.
    Zivkovic, Z.: Improved adaptive Gaussian mixture model for background subtraction. In: Proceedings of international conference on pattern recognition (ICPR), pp. 28–31 (2004)Google Scholar
  5. 5.
    Kim, c, Hwang, J.-N.: Fast and automatic video object segmentation and tracking for content-based applications. IEEE Trans. Circ. Syst. Video Technol 12(2), 122–129 (2002)CrossRefGoogle Scholar
  6. 6.
    Kalman, R.E.: A new approach to linear filtering and prediction problems. ASME J. Basic Eng. 82, 35–45 (1960)CrossRefGoogle Scholar
  7. 7.
    Xu, M., Orwell, J., Jones, G.: Tracking football players with multiple cameras. In: Proceedings of IEEE international conference on image processing (ICIP), pp. 2909–2912 (2004)Google Scholar
  8. 8.
    Iwase, S., Saito, H.: Parallel tracking of all soccer players by integrating detected positions in multiple view images. In: Proceeding of international conference on pattern recognition (ICPR), pp 751–754 (2004)Google Scholar
  9. 9.
    Fleuret, F., Berclaz, J., Lengagne, R., Fua, P.: Multiple people tracking with a probabilistic occupancy map. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 267–282 (2008)CrossRefGoogle Scholar
  10. 10.
    Shitrit, H.B., Berclaz, J., Fleuret, F., Fua, P.: Multi-commodity network flow for tracking multiple people. IEEE Trans. Pattern Anal. Mach. Intell. 36(8), 1614–1627 (2014)CrossRefGoogle Scholar
  11. 11.
    Hu, M.-C., Chang, M.-H., Wu, J.-L., Chi, L.: Robust camera calibration and player tracking in broadcast basketvall video. IEEE Trans. Multimed. 13(2), 266–279 (2011)CrossRefGoogle Scholar
  12. 12.
    Li, H., Flierl, M.: Sift-based multi-view cooperative tracking for soccer video. In: Proceedings of IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 1001–1004 (2012)Google Scholar
  13. 13.
    Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Trans. Pattern Anal. Mach. Intell. 25(5), 564–577 (2003)CrossRefGoogle Scholar
  14. 14.
    Liu, J., Tong, X., Li, W., Wang, T., Zhang, Y., Wang, H.: Automatic player detection, labeling, and tracking in broadcast soccer video. Pattern Recognit. Lett. 30, 103–113 (2009)CrossRefGoogle Scholar
  15. 15.
    Xing, J., Ai, H., Liu, L., Lao, S.: Multiple player tracking in sports video: a dual-mode two-way bayesian inference approach with progressive observation modeling. IEEE Trans. Image Process. 20(6), 1652–1666 (2011)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Berclaz, J., Fleuret, F., Turetken, E., Fua, P.: Multiple object tracking using k-shortest paths optimization. IEEE Trans. Pattern Anal. Mach. Intell. 33(9), 1806–1818 (2011)CrossRefGoogle Scholar
  17. 17.
    Zhang, T., Ghanem, B., Ahuja, N.: Robust multi-object tracking via cross-domain contextual information for sports video analysis. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 985–988 (2012)Google Scholar
  18. 18.
    Liu, J., Carr, P., Collins, R., Liu. Y.: Tracking sports players with context-conditioned motion models. In: Proceeding of IEEE international conference on computer vision and pattern recognition (CVPR), pp. 1830–1837 (2013)Google Scholar
  19. 19.
    Lu, W.-L., Ting, J.-A., Little, J.J., Murphy, K.P.: Learning to track and identify players from broadcast sports videos. IEEE Trans. Pattern Anal. Mach. Intell. 35(7), 1704–1716 (2013)CrossRefGoogle Scholar
  20. 20.
    Baysal, S., Duygulu, P.: Sentioscope: a soccer player tracking system using model field particles. IEEE Trans. Circuits Syst. Video Technol. 26(7), 1350–1362 (2016)CrossRefGoogle Scholar
  21. 21.
    Wang, L., Ouyang, W., Wang, X., Lu., H.: Visual tracking with fully convolutional networks. In: Proceeding of IEEE international conference on computer vision (ICCV). pp 3119–3127 (2015)Google Scholar
  22. 22.
    Held, D., Thrun, S., Savarese, S.: Learning to track at 100fps with deep regression networks. In: Proceedings of European conference on computer vision (ECCV), pp. 749–765 (2016)Google Scholar
  23. 23.
    Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)CrossRefGoogle Scholar
  24. 24.
    Han, J., Ma, K.-K.: Fuzzy color histogram and its use in color image retrieval. IEEE Trans. Image Process. 11(8), 944–952 (2002)CrossRefGoogle Scholar
  25. 25.
    Varior, R. R., Wang, G.: A data-driven color feature learning scheme for image retrieval. In: Proceeding of IEEE international conference on acoustics, speech and signal processing (ICASSP), pp. 1334–1338 (2015)Google Scholar
  26. 26.
    Henriques, J. F., Caseiro, R., Martins, P., Batista, J.: Exploiting the circulant structure of tracking-by-detection with kernels. In: Proceeding of European conference on computer vision (ECCV), pp. 1–14 (2012)Google Scholar
  27. 27.
    D’Orazio, T., Leo, M., Mosca, N., Spagnolo, P., Mazzeo, P. L.: A semi-automatic system for ground truth generation of soccer video sequences. In: Proceeding of IEEE international conference on advanced video and signal based surveillance (AVSS), pp. 559–564 (2009)Google Scholar
  28. 28.
    Stauffer, C., Grimson, W. E. L.: Adaptive background mixture models for real-time tracking. In: Proceeding of IEEE international conference on computer vision and pattern recognition (CVPR), pp. 246–252 (1999)Google Scholar
  29. 29.
    Kim, W., Kim, Y.: Background subtraction using illumination-invariant structural complexity. IEEE Signal Process. Lett. 23(5), 634–638 (2016)CrossRefGoogle Scholar
  30. 30.
    Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2281 (2012)CrossRefGoogle Scholar
  31. 31.
    Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via on-line boosting. In: Proceeding of British machine vision conference (BMVC), pp. 47–56 (2006)Google Scholar
  32. 32.
    Babenko, B., Yang, M-H., Belongie, S.: Visual tracking with online multiple instance learning. In: Proceeding of IEEE international conference on computer vision and pattern recognition (CVPR), pp. 983–990 (2009)Google Scholar
  33. 33.
    Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: automatic detection of tracking failures. In: Proceeding of international conference on pattern recognition (ICPR), pp. 2756–2759 (2010)Google Scholar
  34. 34.
    Danelljan, M., Khan, F. S., Felsberg, M., van de Weijer, J.: Adaptive color attributes for real-time visual tracking. In: Proceeding of IEEE international conference on computer vision and pattern recognition (CVPR), pp. 1090–1097 (2014)Google Scholar
  35. 35.
    Wu, B., Nevatia, R.: Detection and tracking of multiple, partially occluded humans by Bayesian combination of edgelet based part detector. Int. J. Comput. Vis. 75(2), 247–266 (2007)CrossRefGoogle Scholar
  36. 36.
    Xing, J., Ai, H., Lao, S.: Multi-object tracking through occlusions by local tracklets filtering and global tracklets association with detection responses. In: Proceeding of IEEE international conference on computer vision and pattern recognition (CVPR), pp. 1200–1207 (2009)Google Scholar
  37. 37.
    Wu, Y., Lim, J., Yang, M. H.: Online object tracking: a benchmark. In: Proceeding of IEEE international conference on computer vision and pattern recognition (CVPR), pp. 2411–2418 (2013)Google Scholar
  38. 38.
    Pirsiavash, H., Ramanan, D., Fowlkes, C. C.: Globally-optimal greedy algorithms for tracking a variable number of objects. In: Proceeding of IEEE international conference on computer vision and pattern recognition (CVPR), pp. 1201–1208 (2011)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Wonjun Kim
    • 1
  • Sung-Won Moon
    • 2
  • Jiwon Lee
    • 2
  • Do-Won Nam
    • 2
  • Chanho Jung
    • 3
  1. 1.Electronics EngineeringKonkuk UniversitySeoulKorea
  2. 2.Electronics and Telecommunications Research InstituteDaejeonKorea
  3. 3.Electrical EngineeringHanbat National UniversityDaejeonKorea

Personalised recommendations