Skip to main content
Log in

Automatic stenosis detection using SVM from CTA projection images

  • Special Issue Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

Identification of stenosis in computed tomography angiography (CTA) image of a heart is a challenging task. In this paper, we propose an automated support vector machine (SVM) based approach that detects the branches and stenosis in 2D projection images obtained from different rotation angles of CTA image of a heart. Coronary arteries are segmented from the projection images, centerlines of the arteries are obtained and the presence of stenosis is detected by tracking the arteries along the vessel direction. Tracking is done by sliding overlapping windows in the estimated vessel direction obtained by combining geometric and intensity directions of the vessel. Different SVM models have been built for branch and stenosis detections using geometric and shape based features obtained from the sliding window regions. The proposed system was evaluated in terms of Precision and Recall using CTA images obtained from Billroth Hospitals, Chennai, India, and the results are encouraging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Arnoldi, E., Gebregziabher, M., Schoepf, U.J., Goldenberg, R., Ramos-Duran, L., Zwerner, P.L., Nikolaou, K., Reiser, M.F., Costello, P., Thilo, C.: Automated computer-aided stenosis detection at coronary CT angiography: initial experience. Eur. Radiol. 20(5), 1160–1167 (2010)

    Article  Google Scholar 

  2. Aylward, S., Bullitt, E.: Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction. IEEE Trans. Med. Imaging 21(2), 61–75 (2002)

    Article  Google Scholar 

  3. Borgefors, G., Ramella, G., Baja, D., Sanniti, G.: Hierarchical decomposition of multiscale skeletons. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1296–1312 (2001)

    Article  Google Scholar 

  4. Boskamp, T., Rinck, D., Link, F., Kummerlen, B., Stamm, G., Mildenberger, P.: New vessel analysis tool for morphometric quantification and visualization of vessels in CT and MR imaging data sets. Radiographics 24(1), 287–297 (2004)

    Article  Google Scholar 

  5. Bradski, G.: The opencv library. Dr. Dobb’s Journal of Software Tools (2000)

  6. Cetin, S., Unal, G.: Automatic detection of coronary artery stenosis in CTA based on vessel intensity and geometric features. In: Proc. of MICCAI Workshop 3D Cardiovascular Imaging: a MICCAI segmentation Challenge (2012)

  7. Chang, C., Lin, C.: LIBSVM: a library for support vector machines (version 2.3) (2001)

  8. Chen, C.C.: Improved moment invariants for shape discrimination. Pattern Recogn. 26(5), 683–686 (1993)

    Article  Google Scholar 

  9. Chi, Y., Huang, W., Zhou, J., Zhong, L., Tan, S.Y., Felix, K.Y.J., Sheon, L.C.S., San Tan, R.: A composite of features for learning-based coronary artery segmentation on cardiac CT angiography. In: Machine Learning in Medical Imaging, pp. 271–279. Springer (2015)

  10. Dinesh, M., Devarakota, P., Kumar, J.: Automatic detection of plaques with severe stenosis in coronary vessels of ct angiography. In: SPIE Medical Imaging, vol. 7624 (2010)

  11. Eiho, S., Qian, Y.: Detection of coronary artery tree using morphological operator. In: Computers in cardiology 1997, pp. 525–528. IEEE (1997)

  12. Flórez Valencia, L., Orkisz, M., Corredor Jerez, R., Torres González, J., Correa Agudelo, E., Mouton, C., Hernández Hoyos, M.: Coronary artery segmentation and stenosis quantification in CT images with use of a right generalized cylinder model. In: Proceedings of MICCAI workshop 3D cardiovascular imaging: a MICCAI segmentation challenge (2012)

  13. Florin, C., Moreau-Gobard, R., Williams, J.: Automatic heart peripheral vessels segmentation based on a normal MIP ray casting technique. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2004, pp. 483–490. Springer (2004)

  14. Frangi, A., Niessen, W., Vincken, K., Viergever, M.: Medical image computing and computer-assisted interventation\(-\) miccai98. Lect. Notes Comput. Sci. 1496 (1998)

  15. Frangi, A.F., Niessen, W.J., Hoogeveen, R.M., Van Walsum, T., Viergever, M., et al.: Model-based quantitation of 3-D magnetic resonance angiographic images. IEEE Trans. Med. Imaging 18(10), 946–956 (1999)

    Article  Google Scholar 

  16. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Medical image computing and computer-assisted interventation MICCAI 98, pp. 130–137. Springer (1998)

  17. Halpern, E.J., Halpern, D.J.: Diagnosis of coronary stenosis with CT angiography: comparison of automated computer diagnosis with expert readings. Acad. Radiol. 18(3), 324–333 (2011)

    Article  Google Scholar 

  18. Han, S.C., Fang, C.C., Chen, Y., Chen, C.L., Wang, S.P.: Coronary computed tomography angiographya promising imaging modality in diagnosing coronary artery disease. J. Chin. Med. Assoc. 71(5), 241–246 (2008)

    Article  Google Scholar 

  19. Hernández-Hoyos, M., Orkisz, M., Puech, P., Mansard-Desbleds, C., Douek, P., Magnin, I.E.: Computer-assisted analysis of three-dimensional mr angiograms. RadioGraphics 22(2), 421–436 (2002)

    Article  Google Scholar 

  20. Jain, V., Learned-Miller, E.: FDDB: A benchmark for face detection in unconstrained settings. Tech. Rep. UM-CS-2010-009, University of Massachusetts, Amherst (2010)

  21. Kang, D., Dey, D., Slomka, P.J., Arsanjani, R., Nakazato, R., Ko, H., Berman, D.S., Li, D., Kuo, C.C.J.: Structured learning algorithm for detection of nonobstructive and obstructive coronary plaque lesions from computed tomography angiography. J. Med. Imaging 2(1), 1–10 (2015)

    Article  Google Scholar 

  22. Kang, D., Slomka, P.J., Nakazato, R., Arsanjani, R., Cheng, V.Y., Min, J.K., Li, D., Berman, D.S., Kuo, C.C.J., Dey, D.: Automated knowledge-based detection of nonobstructive and obstructive arterial lesions from coronary CT angiography. Med. Phys. 40(4), 1–11 (2013)

    Article  Google Scholar 

  23. Kang, D.G., Suh, D.C., Ra, J.B.: Three-dimensional blood vessel quantification via centerline deformation. IEEE Trans. Med. Imaging 28(3), 405–414 (2009)

    Article  Google Scholar 

  24. Kelm, B.M., Mittal, S., Zheng, Y., Tsymbal, A., Bernhardt, D., Vega-Higuera, F., Zhou, S.K., Meer, P., Comaniciu, D.: Detection, grading and classification of coronary stenoses in computed tomography angiography. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2011, pp. 25–32. Springer (2011)

  25. Khedmati, A., Nikravanshalmani, A., Salajegheh, A.: Semi-automatic detection of coronary artery stenosis in 3D CTA. IET Image Process. 10(10), 724–732 (2016)

    Article  Google Scholar 

  26. Krissian, K., Malandain, G., Ayache, N., Vaillant, R., Trousset, Y.: Model-based detection of tubular structures in 3D images. Comput. Vis. Image Underst. 80(2), 130–171 (2000)

    Article  MATH  Google Scholar 

  27. Lam, L., Lee, S.W., Suen, C.: Thinning methodologies—a comprehensive survey. IEEE Trans. Pattern Anal. Mach. Intell. 14(9), 869–885 (1992)

    Article  Google Scholar 

  28. Mirunalini, P., Aravindan, C.: Automatic segmentation of coronary arteries and detection of stenosis. In: TENCON 2013-IEEE Region 10 Conference, pp. 1–4. IEEE (2013)

  29. Mittal, S., Zheng, Y., Georgescu, B., Vega-Higuera, F., Zhou, S.K., Meer, P., Comaniciu, D.: Fast automatic detection of calcified coronary lesions in 3D cardiac CT images. In: Machine learning in medical imaging, pp. 1–9. Springer (2010)

  30. Mohr, B., Masood, S., Plakas, C.: Accurate lumen segmentation and stenosis detection and quantification in coronary CTA. In: Proceedings of 3D Cardiovascular Imaging: a MICCAI segmentation challenge workshop (2012)

  31. Mukundan, R., Ong, S.H., Lee, P.A.: Image analysis by Tchebichef moments. IEEE Trans. Image Process. 10(9), 1357–1364 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mukundan, R., Ramakrishnan, K.: Fast computation of Legendre and Zernike moments. Pattern Recogn. 28(9), 1433–1442 (1995)

    Article  MathSciNet  Google Scholar 

  33. Öksüz, İ., Ünay, D., Kadıpaşaoğlu, K.: A hybrid method for coronary artery stenoses detection and quantification in CTA images. In: Proc. of MICCAI workshop 3D cardiovascular imaging: a MICCAI segmentation challenge (2012)

  34. Rahman, M., Uddin, S., Hasan, M.: 3D segmentation and visualization of left coronary arteries of heart using CT images. In: IJCA Special Issue on Computer Aided Soft Computing Techniques for Imaging and Biomedical Applications 2010, pp. 88–92 (2010)

  35. Schaap, M., Metz, C.T., van Walsum, T., van der Giessen, A.G., Weustink, A.C., Mollet, N.R., Bauer, C., Bogunović, H., Castro, C., Deng, X., et al.: Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms. Med. Image Anal. 13(5), 701–714 (2009)

    Article  Google Scholar 

  36. Schaap, M., van Walsum, T., Neefjes, L., Metz, C., Capuano, E., De Bruijne, M., Niessen, W.: Robust shape regression for supervised vessel segmentation and its application to coronary segmentation in CTA. IEEE Trans. Med. Imaging 30(11), 1974–1986 (2011)

    Article  Google Scholar 

  37. Shahzad, R., Kirişli, H., Metz, C., Tang, H., Schaap, M., van Vliet, L., Niessen, W., van Walsum, T.: Automatic segmentation, detection and quantification of coronary artery stenoses on CTA. Int. J. Cardiovasc. Imaging 29(8), 1847–1859 (2013)

    Article  Google Scholar 

  38. Shang, Y., Deklerck, R., Nyssen, E., Markova, A., De Mey, J., Yang, X., Sun, K.: Vascular active contour for vessel tree segmentation. IEEE Trans. Biomed. Eng. 58(4), 1023–1032 (2011)

    Article  Google Scholar 

  39. Sun, K., Chen, Z., Jiang, S.: Local morphology fitting active contour for automatic vascular segmentation. IEEE Trans. Biomed. Eng. 59(2), 464–473 (2012)

    Article  Google Scholar 

  40. Sun, Y.: Automated identification of vessel contours in coronary arteriograms by an adaptive tracking algorithm. IEEE Trans. Med. Imaging 8(1), 78–88 (1989)

    Article  Google Scholar 

  41. Tian, Y., Chen, Q., Wang, W., Peng, Y., Wang, Q., Duan, F., Wu, Z., Zhou, M.: A vessel active contour model for vascular segmentation. BioMed Res. Int. 2014, 1–15 (2014)

    Google Scholar 

  42. Vukadinovic, D., van Walsum, T., Manniesing, R., van der Lugt, A., de Weert, T., Niessen, W.: Adaboost classification for model-based segmentation of the outer wall of the common carotid artery in CTA. Med. Imaging 6914, 1–8 (2008)

    Article  Google Scholar 

  43. Wang, L., He, L., Mishra, A., Li, C.: Active contours driven by local gaussian distribution fitting energy. Signal Process. 89(12), 2435–2447 (2009)

    Article  MATH  Google Scholar 

  44. Wesarg, S., Firle, E.A.: Segmentation of vessels: the corkscrew algorithm. Med. Imaging 2004, 1609–1620 (2004)

    Google Scholar 

  45. Wesarg, S., Khan, M.F., Firle, E.A.: Localizing calcifications in cardiac CT data sets using a new vessel segmentation approach. J. Dig. Imaging 19(3), 249–257 (2006)

    Article  Google Scholar 

  46. Wink, O., Niessen, W.J., Viergever, M., et al.: Fast delineation and visualization of vessels in 3-D angiographic images. IEEE Trans. Med. Imaging 19(4), 337–346 (2000)

    Article  Google Scholar 

  47. Wong, W.C., Chung, A.: Augmented vessels for quantitative analysis of vascular abnormalities and endovascular treatment planning. IEEE Trans. Med. Imaging 25(6), 665–684 (2006)

    Article  Google Scholar 

  48. Xu, Y., Liang, G., Hu, G., Yang, Y., Geng, J., Saha, P.K.: Quantification of coronary arterial stenoses in CTA using fuzzy distance transform. Comput. Med. Imaging Gr. 36(1), 11–24 (2012)

    Article  Google Scholar 

  49. Xu, Y., Zhang, H., Li, H., Hu, G.: An improved algorithm for vessel centerline tracking in coronary angiograms. Comput. Methods Progr. Biomed. 88(2), 131–143 (2007)

    Article  Google Scholar 

  50. Zana, F., Klein, J.C.: Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Trans. Image Process. 10(7), 1010–1019 (2001)

    Article  MATH  Google Scholar 

  51. Zhang, T., Suen, C.Y.: A fast parallel algorithm for thinning digital patterns. Commun. ACM 27(3), 236–239 (1984)

    Article  Google Scholar 

  52. Zheng, Y., Loziczonek, M., Georgescu, B., Zhou, S.K., Vega-Higuera, F., Comaniciu, D.: Machine learning based vesselness measurement for coronary artery segmentation in cardiac CT volumes. Proc. SPIE Med. Imaging 7962, 1–12 (2011)

    Google Scholar 

  53. Zhou, J., Chang, S., Metaxas, D., Axel, L.: Vascular structure segmentation and bifurcation detection. In: 4th IEEE international symposium on biomedical imaging (ISBI), pp. 872–875. IEEE (2007)

Download references

Acknowledgements

The authors would like to thank Billroth Hospitals, Chennai, India, for providing the data, and medical experts who have helped in creating the ground truth. The authors would like to thank also the management of SSN College of Engineering for funding the High Performance Computing lab where this research is being carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Mirunalini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirunalini, P., Aravindan, C. & Jaisakthi, S.M. Automatic stenosis detection using SVM from CTA projection images. Multimedia Systems 25, 83–93 (2019). https://doi.org/10.1007/s00530-017-0578-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-017-0578-1

Keywords

Navigation