Skip to main content
Log in

A general framework for real-time analysis of massive multimedia streams

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

Big Data platforms provide opportunities for the management and analysis of large quantities of information, but the services they provide are often too raw, since they focus on issues of fault-tolerance, increased parallelism, and so on. An additional software layer is, therefore, needed to effectively use such architectures for advanced applications in several important real-world domains, such as scientific and health care sensors, user-generated data, supply chain systems and financial companies, to name a few. In this paper, we present RAM\(^3\)S, a framework for the real-time analysis of massive multimedia streams, where data come from multiple data sources (such as sensors and cameras) that are widely located on the territory, with the final goal to discovery new and hidden information from the output of data sources as they occur, thus with very limited latency. We apply RAM\(^3\)S to the use case of automatic detection of “suspect” people from several concurrent video streams, and instantiate it on top of three different open source engines for the analysis of streaming Big Data (i.e., Apache Spark, Apache Storm, and Apache Flink). The effectiveness and scalability of RAM\(^3\)S instantiation is experimentally evaluated on real data, also comparing the performance of the three considered Big Data platforms. Such comparison is performed both on a cluster of physical machines in our datalab and on the Google Cloud Platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. http://hadoop.apache.org.

  2. http://spark.apache.org.

  3. http://storm.apache.org.

  4. http://flink.apache.org.

  5. http://kafka.apache.org.

  6. http://openimaj.org.

  7. http://cloud.google.com.

  8. http://www-db.disi.unibo.it/research/datalab/.

  9. http://www.cs.tau.ac.il/~wolf/ytfaces/.

  10. http://benchmark.ini.rub.de.

  11. http://www.cvl.isy.liu.se/research/datasets/traffic-signs-dataset/.

  12. http://www.rabbitmq.com.

  13. http://www.nist.gov/programs-projects/face-video-evaluation-five.

References

  1. Alexandrov, A., Bergmann, R., Ewen, S., Freytag, J.-C., Hueske, F., Heise, A., Kao, O., Leich, M., Leser, U., Markl, V., Naumann, F., Peters, M., Rheinländer, A., Sax, M.J., Schelter, S., Höger, M., Tzoumas, K., Warneke, D.: The stratosphere platform for big data analytics. VLDB J. 23(6), 939–964 (2014)

    Article  Google Scholar 

  2. Bartolini, I., Ciaccia, P., Patella, M.: Query Processing Issues in Region-Based Image Databases. Knowledge and Information Systems 25(2), 389–420 (2010)

    Article  Google Scholar 

  3. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: massive online analysis. J. Mach. Learn. Res. 99, 1601–1604 (2010)

    Google Scholar 

  4. Chandy, K.M., Lamport, L.: Distributed snapshots: determining global states of distributed systems. ACM Trans. Comput. Syst. 3(1), 63–75 (1985)

    Article  Google Scholar 

  5. Chang, S.K., Zhao, L., Guirguis, S., Kulkarni, R.: A computation-oriented multimedia data streams model for content-based information retrieval. Multimed. Tools Appl. 46(2), 399–423 (2010)

    Article  Google Scholar 

  6. Chintapalli, S., Dagit, D., Evans, B., Farivar, R., Graves, T., Holderbaugh, M., Liu, Z., Nusbaum, K., Patil, K., Jerry Peng, B., Poulosky, P.: Benchmarking streaming computation engines at Yahoo!. Yahoo! Engineering blog (2015). http://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-computation-engines-at

  7. Ciaccia, P., Patella, M., Zezula, P.: M-tree: an efficient access method for similarity search in metric spaces. In: Proceedings of the 23rd VLDB International Conference, pp. 426–435 (1997)

  8. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)

    Article  Google Scholar 

  9. Dziech, A., Leszczuk, M., Baran, R.: Guest editorial: intelligent audio-visual observation systems for urban environments. Multimed. Tools Appl. 75(17), 10397–10405 (2016)

    Article  Google Scholar 

  10. Gaber, M.M., Zaslavsky, A., Krishnaswamy, S.: Mining data streams: a review. SIGMOD Rec. 34(2), 18–26 (2005)

    Article  MATH  Google Scholar 

  11. Gunther, N.J., Puglia, P., Tomasette, K.: Hadoop superlinear scalability. Commun. ACM 58(4), 46–55 (2015)

    Article  Google Scholar 

  12. Houben, S., Stallkamp, J., Salmen, J., Schlipsing, M., Igel, C.: Detection of traffic signs in real-world images: the german traffic sign detection benchmark. In: Proceedings of the 2013 International Joint Conference on Neural Networks (IJCNN 2013), pp. 1–8 (2013)

  13. Hu, H., Wen, Y., Chua, T.-S., Li, X.: Toward scalable systems for big data analytics: a technology tutorial. IEEE Access 2, 652–687 (2014)

    Article  Google Scholar 

  14. Indect Project Homepage. http://www.indect-project.eu/. Accessed 07 Sept 2017

  15. Kotus, J., Łopatka, K., Czyżewski, A., Bogdanis, G.: Processing of acoustical data in a multimodal bank operating room surveillance system. Multimed. Tools Appl. 75(17), 10787–10805 (2016)

    Article  Google Scholar 

  16. Laney, D.: 3D data management: controlling data volume, velocity and variety. META Group (Gartner) research report (2001). http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf

  17. Larsson, F., Felsberg, M.: Using fourier descriptors and spatial models for traffic sign recognition. In: Proceedings of the 17th Scandinavian Conference on Image Analysis (SCIA 2011), pp. 238–249 (2011)

  18. Łopatka, K., Kotus, J., Czyżewski, A.: Detection, classification and localization of acoustic events in the presence of background noise for acoustic surveillance of hazardous situations. Multimed. Tools Appl. 75(17), 10407–10439 (2016)

    Article  Google Scholar 

  19. Manyika, J., Chui, M., Bughin, J., Brown, B., Dobbs, R., Roxburgh, C., Byers, A.H.: Big data: the next frontier for innovation, competition, and productivity. McKinsey Global Institute report (2011). http://www.mckinsey.com/Insights/MGI/Research/Technology_and_Innovation/Big_data_The_next_frontier_for_innovation. Accessed 07 Sept 2017

  20. Mu, C., Xie, J., Yan, W., Liu, T., Li, P.: A fast recognition algorithm for suspicious behavior in high definition videos. Multimed. Syst. 22(3), 275–285 (2016)

    Article  Google Scholar 

  21. Roh, M.-C., Lee, S.-W.: Human gesture recognition using a simplified dynamic bayesian network. Multimed. Syst. 21(6), 557–568 (2015)

    Article  Google Scholar 

  22. Sharaf, M.A., Chrysanthis, P.K., Labrinidis, A., Pruhs, K.: Algorithms and metrics for processing multiple heterogeneous continuous queries. ACM Trans. Database Syst. 33(1), 5:1–5:44 (2008)

    Article  Google Scholar 

  23. Tang, M., Pongpaichet, S., Jain, R.: Research challenges in developing multimedia systems for managing emergency situations. In: Proceedings of the 2016 ACM on Multimedia Conference (MM ’16), pp. 938–947 (2016)

  24. Turk, M., Pentland, A. P.: Face recognition using eigenfaces. In: Proceedings of the 1991 Conference on Computer Vision and Pattern Recognition (CVPR 1991), pp. 586–591 (1991)

  25. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 Conference on Computer Vision and Pattern Recognition (CVPR 2001), pp. 511–518 (2001)

  26. Wolf, L., Hassner, T., Maoz, I.: Face recognition in unconstrained videos with matched background similarity. In: Proceedings of the 2011 Conference on Computer Vision and Pattern Recognition (CVPR 2011), pp. 529–534 (2011)

  27. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster computing with working sets. In: Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing (HotCloud ’10), p. 10 (2010)

  28. Zhang, J., Han, Y., Jiang, J.: Tucker decomposition-based tensor learning for human action recognition. Multimed. Syst. 22(3), 343–353 (2016)

    Article  Google Scholar 

  29. Zeng, L., Li, L., Duan, L., Lu, K., Shi, Z., Wang, M., Wu, W., Luo, P.: Distributed data mining: a survey. Inf. Technol. Manag. 13(4), 403–409 (2012)

    Article  Google Scholar 

  30. Zheng, Z., Jeong, H.-Y., Huang, T., Shu, J.: KDE based outlier detection on distributed data streams in multimedia network. Multimed. Tools Appl. 76(17), 18027–18045 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the datalab students that participated in the software development of the RAM\(^3\)S framework.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilaria Bartolini.

Additional information

Communicated by M. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartolini, I., Patella, M. A general framework for real-time analysis of massive multimedia streams. Multimedia Systems 24, 391–406 (2018). https://doi.org/10.1007/s00530-017-0566-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-017-0566-5

Keywords

Navigation