A survey on context-aware mobile visual recognition

  • Weiqing Min
  • Shuqiang Jiang
  • Shuhui Wang
  • Ruihan Xu
  • Yushan Cao
  • Luis Herranz
  • Zhiqiang He
Special Issue Paper
  • 201 Downloads

Abstract

The phenomenal growth of the usage of mobile devices (e.g., mobile phones and tablet PCs) opens up a new service, namely mobile visual recognition, which has been widely used in many areas, such as mobile shopping and augmented reality. The rich contextual information (e.g., location, time and direction information), easily acquired by the mobile devices, provides useful clues to facilitate mobile visual recognition, including speeding up the recognition time and improving the recognition performance. This survey focuses on recent advances in Context-Aware Mobile Visual Recognition (CAMVR) and reviews related work regarding to different contextual information, recognition methods, recognition types, and various application scenarios. Finally, we discuss future research directions in this field.

Keywords

Mobile visual recognition Context Survey 

References

  1. 1.
    Ahern, S., Davis, M., Eckles, D., King, S., Naaman, M., Nair, R., Spasojevic, M., Yang, J.: Zonetag: Designing context-aware mobile media capture to increase participation. In: Proceedings of the Pervasive Image Capture and Sharing, 8th Int. Conf. on Ubiquitous Computing, California (2006)Google Scholar
  2. 2.
    Amlacher, K., Paletta, L.: Geo-indexed object recognition for mobile vision tasks. In: Proceedings of the 10th International Conference on Human Computer Interaction with Mobile Devices and Services, pp. 371–374. ACM (2008)Google Scholar
  3. 3.
    Arandjelović, R., Zisserman, A.: Name that sculpture. In: Proceedings of the 2nd ACM International Conference on Multimedia Retrieval, p. 3. ACM (2012)Google Scholar
  4. 4.
    Arandjelović, R., Zisserman, A.: Three things everyone should know to improve object retrieval. In: Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pp. 2911–2918. IEEE (2012)Google Scholar
  5. 5.
    Bacha, S., Benblidia, N.: Combining context and content for automatic image annotation on mobile phones. In: IT Convergence and Security (ICITCS), 2013 International Conference on, pp. 1–4. IEEE (2013)Google Scholar
  6. 6.
    Baeza-Yates, R., Ribeiro-Neto, B., et al.: Modern information retrieval, vol. 463 (1999)Google Scholar
  7. 7.
    Bay, H., Tuytelaars, T., Van Gool, L.: Surf: Speeded up robust features. In: Computer vision—ECCV 2006, pp. 404–417. Springer, Berlin (2006)Google Scholar
  8. 8.
    Chandrasekhar, V., Takacs, G., Chen, D., Tsai, S., Grzeszczuk, R., Girod, B.: Chog: Compressed histogram of gradients a low bit-rate feature descriptor. In: Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pp. 2504–2511. IEEE (2009)Google Scholar
  9. 9.
    Chandrasekhar, V.R., Chen, D.M., Tsai, S.S., Cheung, N.M., Chen, H., Takacs, G., Reznik, Y., Vedantham, R., Grzeszczuk, R., Bach, J., et al.: The stanford mobile visual search data set. In: Proceedings of the Second Annual ACM Conference on Multimedia Systems, pp. 117–122. ACM (2011)Google Scholar
  10. 10.
    Chatzilari, E., Liaros, G., Nikolopoulos, S., Kompatsiaris, Y.: A comparative study on mobile visual recognition. In: Machine Learning and Data Mining in Pattern Recognition, pp. 442–457. Springer, Berlin (2013)Google Scholar
  11. 11.
    Chen, D.M., Baatz, G., Köser, K., Tsai, S.S., Vedantham, R., Pylvä, T., Roimela, K., Chen, X., Bach, J., Pollefeys, M., et al.: City-scale landmark identification on mobile devices. In: Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pp. 737–744. IEEE (2011)Google Scholar
  12. 12.
    Chen, D.M., Makar, M., Araujo, A.F., Girod, B.: Interframe coding of global image signatures for mobile augmented reality. In: Data Compression Conference (DCC), 2014, pp. 33–42. IEEE (2014)Google Scholar
  13. 13.
    Chen, D.M., Tsai, S.S., Chandrasekhar, V., Takacs, G., Singh, J., Girod, B.: Tree histogram coding for mobile image matching. In: Data Compression Conference, 2009. DCC’09., pp. 143–152. IEEE (2009)Google Scholar
  14. 14.
    Chen, D.M., Tsai, S.S., Vedantham, R., Grzeszczuk, R., Girod, B.: Streaming mobile augmented reality on mobile phones. In: Mixed and Augmented Reality, 2009. ISMAR 2009. 8th IEEE International Symposium on, pp. 181–182. IEEE (2009)Google Scholar
  15. 15.
    Chen, T., Fan, J., Lu, S.: Context-aware codebook learning for mobile landmark recognition. In: Image Processing (ICIP), 2014 IEEE International Conference on, pp. 3963–3967. IEEE (2014)Google Scholar
  16. 16.
    Chen, T., Li, Z., Yap, K.H., Wu, K., Chau, L.P.: A multi-scale learning approach for landmark recognition using mobile devices. In: Information, Communications and Signal Processing, 2009. ICICS 2009. 7th International Conference on, pp. 1–4. IEEE (2009)Google Scholar
  17. 17.
    Chen, T., Lu, S., Fan, J.: Context-aware vocabulary tree for mobile landmark recognition. J. Vis. Commun. Image Represent. 30, 289–298 (2015)CrossRefGoogle Scholar
  18. 18.
    Chen, T., Yap, K.H.: Context-aware discriminative vocabulary learning for mobile landmark recognition. Circuits Syst. Video Technol. IEEE Trans. 23(9), 1611–1621 (2013)CrossRefGoogle Scholar
  19. 19.
    Chen, T., Yap, K.H.: Discriminative bow framework for mobile landmark recognition. Cybern. IEEE Trans. 44(5), 695–706 (2014)CrossRefGoogle Scholar
  20. 20.
    Chen, T., Yap, K.H., Chau, L.P.: Content and context information fusion for mobile landmark recognition. In: Information, Communications and Signal Processing (ICICS) 2011 8th International Conference on, pp. 1–4. IEEE (2011)Google Scholar
  21. 21.
    Chen, T., Yap, K.H., Chau, L.P.: Integrated content and context analysis for mobile landmark recognition. Circuits Syst. Video Technol. IEEE Trans. 21(10), 1476–1486 (2011)CrossRefGoogle Scholar
  22. 22.
    Chen, T., Yap, K.H., Zhang, D.: Discriminative soft bag-of-visual phrase for mobile landmark recognition. Multimed. IEEE Trans. 16(3), 612–622 (2014)CrossRefGoogle Scholar
  23. 23.
    Chen, W.C., Xiong, Y., Gao, J., Gelfand, N., Grzeszczuk, R.: Efficient extraction of robust image features on mobile devices. In: Proceedings of the 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 1–2. IEEE Computer Society (2007)Google Scholar
  24. 24.
    Cheng, Z., Ren, J., Shen, J., Miao, H.: Building a large scale test collection for effective benchmarking of mobile landmark search. In: Advances in Multimedia Modeling, pp. 36–46. Springer, Berlin (2013)Google Scholar
  25. 25.
    Chi, H.Y., Chen, C.C., Cheng, W.H., Chen, M.S.: Ubishop: commercial item recommendation using visual part-based object representation. Multimed. Tools Appl. pp. 1–23 (2015)Google Scholar
  26. 26.
    Chi, H.Y., Cheng, W.H., Chen, M.S., Tsui, A.W.: Mosro: Enabling mobile sensing for realscene objects with grid based structured output learning. In: International Conference on Multimedia Modeling, pp. 207–218. Springer (2014)Google Scholar
  27. 27.
    Chum, O., Mikulik, A., Perdoch, M., Matas, J.: Total recall II: query expansion revisited. In: Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pp. 889–896. IEEE (2011)Google Scholar
  28. 28.
    Cushen, G., Nixon, M.S., et al.: Mobile visual clothing search. In: Multimedia and Expo Workshops (ICMEW), 2013 IEEE International Conference on, pp. 1–6. IEEE (2013)Google Scholar
  29. 29.
    Di, W., Wah, C., Bhardwaj, A., Piramuthu, R., Sundaresan, N.: Style finder: Fine-grained clothing style detection and retrieval. In: Computer Vision and Pattern Recognition Workshops (CVPRW), 2013 IEEE Conference on, pp. 8–13. IEEE (2013)Google Scholar
  30. 30.
    Duan, L.Y., Ji, R., Chen, J., Yao, H., Huang, T., Gao, W.: Learning from mobile contexts to minimize the mobile location search latency. Signal Process. Image Commun. 28(4), 368–385 (2013)CrossRefGoogle Scholar
  31. 31.
    Duan, L.Y., Ji, R., Chen, Z., Huang, T., Gao, W.: Towards mobile document image retrieval for digital library. Multimed. IEEE Trans. 16(2), 346–359 (2014)CrossRefGoogle Scholar
  32. 32.
    Fritz, G., Seifert, C., Paletta, L.: A mobile vision system for urban detection with informative local descriptors. In: Computer Vision Systems, 2006 ICVS’06. IEEE International Conference on, pp. 30–30. IEEE (2006)Google Scholar
  33. 33.
    Girod, B., Chandrasekhar, V., Chen, D.M., Cheung, N.M., Grzeszczuk, R., Reznik, Y., Takacs, G., Tsai, S.S., Vedantham, R.: Mobile visual search. Signal Process. Mag. IEEE 28(4), 61–76 (2011)CrossRefGoogle Scholar
  34. 34.
    Guan, T., He, Y., Duan, L., Yang, J., Gao, J., Yu, J.: Efficient bof generation and compression for on-device mobile visual location recognition. MultiMed. IEEE 21(2), 32–41 (2014)CrossRefGoogle Scholar
  35. 35.
    Guan, T., He, Y., Gao, J., Yang, J., Yu, J.: On-device mobile visual location recognition by integrating vision and inertial sensors. Multimed. IEEE Trans. 15(7), 1688–1699 (2013)CrossRefGoogle Scholar
  36. 36.
    Gui, Z., Wang, Y., Liu, Y., Chen, J.: Mobile visual recognition on smartphones. J. Sens. 2013, 1–9 (2013)CrossRefGoogle Scholar
  37. 37.
    Guillaumin, M., Mensink, T., Verbeek, J., Schmid, C.: Tagprop: Discriminative metric learning in nearest neighbor models for image auto-annotation. In: Computer Vision, 2009 IEEE 12th International Conference on, pp. 309–316. IEEE (2009)Google Scholar
  38. 38.
    Hao, J., Wang, G., Seo, B., Zimmermann, R.: Point of interest detection and visual distance estimation for sensor-rich video. Multimed. IEEE Trans. 16(7), 1929–1941 (2014)CrossRefGoogle Scholar
  39. 39.
    Hauptmann, A.G., Christel, M.G.: Successful approaches in the trec video retrieval evaluations. In: Proceedings of the 12th Annual ACM International Conference on Multimedia, pp. 668–675. ACM (2004)Google Scholar
  40. 40.
    He, J., Feng, J., Liu, X., Cheng, T., Lin, T.H., Chung, H., Chang, S.F.: Mobile product search with bag of hash bits and boundary reranking. In: Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pp. 3005–3012. IEEE (2012)Google Scholar
  41. 41.
    He, J., Lin, T.H., Feng, J., Chang, S.F.: Mobile product search with bag of hash bits. In: Proceedings of the 19th ACM International Conference on Multimedia, pp. 839–840. ACM (2011)Google Scholar
  42. 42.
    Herranz, L., Xu, R., Jiang, S.: A probabilistic model for food image recognition in restaurants. In: Proceedings of the IEEE ICME (2015)Google Scholar
  43. 43.
    Houle, M.E., Oria, V., Satoh, S., Sun, J.: Annotation propagation in image databases using similarity graphs. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 10(1), 7 (2013)Google Scholar
  44. 44.
    Huang, K., Ding, X., Chen, G., Saenko, K.: Automatic mobile photo tagging using context. In: TENCON 2013-2013 IEEE Region 10 Conference (31194), pp. 1–5. IEEE (2013)Google Scholar
  45. 45.
    Ivanov, I., Vajda, P., Goldmann, L., Lee, J.S., Ebrahimi, T.: Object-based tag propagation for semi-automatic annotation of images. In: Proceedings of the International Conference on Multimedia Information Retrieval, pp. 497–506. ACM (2010)Google Scholar
  46. 46.
    Järvelin, K., Kekäläinen, J.: Ir evaluation methods for retrieving highly relevant documents. In: Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 41–48. ACM (2000)Google Scholar
  47. 47.
    Je, S.k., Lee, S., Oh, W.G.: Mobile visual search applications. In: Proceedings of the International Conference on Image Processing, Computer Vision, and Pattern Recognition (IPCV), p. 1. The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp) (2014)Google Scholar
  48. 48.
    Ji, R., Duan, L.Y., Chen, J., Yao, H., Gao, W.: When codeword frequency meets geographical location. In: Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on, pp. 2400–2403. IEEE (2011)Google Scholar
  49. 49.
    Ji, R., Duan, L.Y., Chen, J., Yao, H., Huang, T., Gao, W.: Learning compact visual descriptor for low bit rate mobile landmark search. In: IJCAI Proceedings-International Joint Conference on Artificial Intelligence, vol. 22, p. 2456 (2011)Google Scholar
  50. 50.
    Ji, R., Duan, L.Y., Chen, J., Yao, H., Rui, Y., Chang, S.F., Gao, W.: Towards low bit rate mobile visual search with multiple-channel coding. In: Proceedings of the 19th ACM International Conference on Multimedia, pp. 573–582. ACM (2011)Google Scholar
  51. 51.
    Ji, R., Duan, L.Y., Chen, J., Yao, H., Yuan, J., Rui, Y., Gao, W.: Location discriminative vocabulary coding for mobile landmark search. Int. J. Comput. Vis. 96(3), 290–314 (2012)CrossRefMATHGoogle Scholar
  52. 52.
    Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the ACM International Conference on Multimedia, pp. 675–678. ACM (2014)Google Scholar
  53. 53.
    Kawano, Y., Yanai, K.: Real-time mobile food recognition system. In: Computer Vision and Pattern Recognition Workshops (CVPRW), 2013 IEEE Conference on, pp. 1–7. IEEE (2013)Google Scholar
  54. 54.
    Kawano, Y., Yanai, K.: Foodcam-256: a large-scale real-time mobile food recognitionsystem employing high-dimensional features and compression of classifier weights. In: Proceedings of the ACM International Conference on Multimedia, pp. 761–762. ACM (2014)Google Scholar
  55. 55.
    Kawano, Y., Yanai, K.: Foodcam: a real-time mobile food recognition system employing fisher vector. In: MultiMedia Modeling, pp. 369–373. Springer, Berlin (2014)Google Scholar
  56. 56.
    Kim, D., Hwang, E., Rho, S.: Location-based large-scale landmark image recognition scheme for mobile devices. In: Mobile, Ubiquitous, and Intelligent Computing (MUSIC), 2012 Third FTRA International Conference on, pp. 47–52 (2012)Google Scholar
  57. 57.
    Kuo, Y.H., Lee, W.Y., Hsu, W.H., Cheng, W.H.: Augmenting mobile city-view image retrieval with context-rich user-contributed photos. In: Proceedings of the 19th ACM International Conference on Multimedia, pp. 687–690. ACM (2011)Google Scholar
  58. 58.
    Lee, Y.H., Kim, B., Kim, H.J.: Photograph indexing and retrieval using combined geo-information and visual features. In: Complex, Intelligent and Software Intensive Systems (CISIS), 2010 International Conference on, pp. 790–793. IEEE (2010)Google Scholar
  59. 59.
    Li, Y., Lim, J.H.: Outdoor place recognition using compact local descriptors and multiple queries with user verification. In: Proceedings of the 15th International Conference on Multimedia, pp. 549–552. ACM (2007)Google Scholar
  60. 60.
    Li, Z., Yap, K.H.: Content and context boosting for mobile landmark recognition. Signal Process. Lett. IEEE 19(8), 459–462 (2012)CrossRefGoogle Scholar
  61. 61.
    Li, Z., Yap, K.H.: Context-aware discriminative vocabulary tree learning for mobile landmark recognition. Digital Signal Process. 24, 124–134 (2014)CrossRefGoogle Scholar
  62. 62.
    Li, Z., Yap, K.H., Tan, K.W.: Context-aware mobile image annotation for media search and sharing. Signal Process. Image Commun. 28(6), 624–641 (2013)CrossRefGoogle Scholar
  63. 63.
    Lim, J.H., Li, Y., You, Y., Chevallet, J.P.: Scene recognition with camera phones for tourist information access. In: Multimedia and Expo, 2007 IEEE International Conference on, pp. 100–103. IEEE (2007)Google Scholar
  64. 64.
    Lin, J., Wu, V.: Tagging content with metadata pre-filtered by context (2013). https://www.google.com/patents/US8370358. US Patent 8,370,358
  65. 65.
    Liu, H., Li, H., Mei, T., Luo, J.: Accurate sensing of scene geo-context via mobile visual localization. Multimed. Syst. 21(3), 255–265 (2015)CrossRefGoogle Scholar
  66. 66.
    Liu, H., Mei, T., Li, H., Luo, J., Li, S.: Robust and accurate mobile visual localization and its applications. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 9(1s), 51 (2013)Google Scholar
  67. 67.
    Liu, H., Mei, T., Luo, J., Li, H., Li, S.: Finding perfect rendezvous on the go: accurate mobile visual localization and its applications to routing. In: Proceedings of the 20th ACM International Conference on Multimedia, pp. 9–18. ACM (2012)Google Scholar
  68. 68.
    Liu, S., Song, Z., Liu, G., Xu, C., Lu, H., Yan, S.: Street-to-shop: cross-scenario clothing retrieval via parts alignment and auxiliary set. In: Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pp. 3330–3337. IEEE (2012)Google Scholar
  69. 69.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  70. 70.
    Mai, W., Dodds, G., Tweed, C. (eds.): A pda-based system for recognizing buildings from user-supplied images. In: Mobile and Ubiquitous Information Access, pp. 143–157. Springer, Berlin (2004)Google Scholar
  71. 71.
    Maruyama, T., Kawano, Y., Yanai, K.: Real-time mobile recipe recommendation system using food ingredient recognition. In: Proceedings of the 2nd ACM International Workshop on Interactive Multimedia on Mobile and Portable Devices, pp. 27–34. ACM (2012)Google Scholar
  72. 72.
    Mei, T., Rui, Y., Li, S., Tian, Q.: Multimedia search reranking: a literature survey. ACM Comput. Surv. (CSUR) 46(3), 38 (2014)CrossRefGoogle Scholar
  73. 73.
    Min, W., Xu, C., Xu, M., Xiao, X., Bao, B.K.: Mobile landmark search with 3d models. Multimed. IEEE Trans. 16(3), 623–636 (2014)CrossRefGoogle Scholar
  74. 74.
    Mouine, S., Yahiaoui, I., Verroust-Blondet, A., Joyeux, L., Selmi, S., Goëau, H.: An android application for leaf-based plant identification. In: Proceedings of the 3rd ACM Conference on International Conference on Multimedia Retrieval, pp. 309–310. ACM (2013)Google Scholar
  75. 75.
    Naaman, M., Nair, R.: Zonetag’s collaborative tag suggestions: What is this person doing in my phone? MultiMed. IEEE 15(3), 34–40 (2008)CrossRefGoogle Scholar
  76. 76.
    Naaman, M., Paepcke, A., Garcia-Molina, H.: From where to what: Metadata sharing for digital photographs with geographic coordinates. In: On the Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE, pp. 196–217. Springer, Berlin (2003)Google Scholar
  77. 77.
    Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, vol. 2, pp. 2161–2168. IEEE (2006)Google Scholar
  78. 78.
    O’Hare N., Gurrin C., Jones G.J., Smeaton A.F. Combination of content analysis and context features for digital photograph retrieval. In: Proceedings of 2nd IEE European Workshop on the Integration of Knowledge, Semantic and Digital Media Technologies, pp. 323–328, IEEE Computer Society, London, UK, Washington, DC, USA, November 29–December 1, 2005Google Scholar
  79. 79.
    Oliveira, L., Costa, V., Neves, G., Oliveira, T., Jorge, E., Lizarraga, M.: A mobile, lightweight, poll-based food identification system. Pattern Recognit 47(5), 1941–1952 (2014)CrossRefGoogle Scholar
  80. 80.
    Panda, J., Sharma, S., Jawahar, C.: Heritage app: annotating images on mobile phones. In: Proceedings of the Eighth Indian Conference on Computer Vision, Graphics and Image Processing, p. 3. ACM (2012)Google Scholar
  81. 81.
    Pei, D., Ji, R., Sun, F., Liu, H.: Estimating viewing angles in mobile street view search. In: Image Processing (ICIP), 2012 19th IEEE International Conference on, pp. 441–444. IEEE (2012)Google Scholar
  82. 82.
    Proß, B., Schöning, J., Krüger, A.: ipiccer: automatically retrieving and inferring tagged location information from web repositories. In: Proceedings of the 11th International Conference on Human–Computer Interaction with Mobile Devices and Services, p. 69. ACM (2009)Google Scholar
  83. 83.
    Qin, C., Bao, X., Choudhury, R.R., Nelakuditi, S.: Tagsense: leveraging smartphones for automatic image tagging. Mob. Comput. IEEE Trans. 13(1), 61–74 (2014)CrossRefGoogle Scholar
  84. 84.
    Quack, T., Bay, H., Van Gool, L.: Object recognition for the internet of things. In: Floerkemeier, C., Langheinrich, M., Fleisch, E., Mattern, F., Sarma, S.E. (eds.) The Internet of Things, pp. 230–246. Springer, Berlin (2008)Google Scholar
  85. 85.
    Ruf, B., Kokiopoulou, E., Detyniecki, M.: Mobile museum guide based on fast sift recognition. In: Detyniecki, M., Leiner, U., Nürnberger, A. (eds.) Adaptive Multimedia Retrieval. Identifying, Summarizing, and Recommending Image and Music, pp. 170–183. Springer, Berlin (2010)Google Scholar
  86. 86.
    Runge, N., Wenig, D., Malaka, R.: Keep an eye on your photos: automatic image tagging on mobile devices. In: Proceedings of the 16th International Conference on Human–Computer Interaction with Mobile Devices and Services, pp. 513–518. ACM (2014)Google Scholar
  87. 87.
    Sang, J., Mei, T., Xu, Y.Q., Zhao, C., Xu, C., Li, S.: Interaction design for mobile visual search. Multimed. IEEE Trans. 15(7), 1665–1676 (2013)CrossRefGoogle Scholar
  88. 88.
    Schroth, G., Huitl, R., Abu-Alqumsan, M., Schweiger, F., Steinbach, E.: Exploiting prior knowledge in mobile visual location recognition. In: Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on, pp. 2357–2360. IEEE (2012)Google Scholar
  89. 89.
    Schroth, G., Huitl, R., Chen, D., Abu-Alqumsan, M., Al-Nuaimi, A., Steinbach, E.: Mobile visual location recognition. Signal Process. Mag. IEEE 28(4), 77–89 (2011)CrossRefGoogle Scholar
  90. 90.
    Seifert, C., Paletta, L., Jeitler, A., Hödl, E., Andreu, J.P., Luley, P., Almer, A.: Visual object detection for mobile road sign inventory. In: Mobile Human–Computer Interaction-MobileHCI 2004, pp. 491–495. Springer, Berlin (2004)Google Scholar
  91. 91.
    Shen, X., Lin, Z., Brandt, J., Wu, Y.: Mobile product image search by automatic query object extraction. In: Computer Vision–ECCV 2012, pp. 114–127. Springer, Berlin (2012)Google Scholar
  92. 92.
    Sinha, P., Jain, R.: Classification and annotation of digital photos using optical context data. In: Proceedings of the 2008 International Conference on Content-Based Image and Video Retrieval, pp. 309–318. ACM (2008)Google Scholar
  93. 93.
    Song, X., Jiang, S., Xu, R., Herranz, L.: Semantic features for food image recognition with geo-constraints. In: Data Mining Workshop (ICDMW), 2014 IEEE International Conference on, pp. 1020–1025. IEEE (2014)Google Scholar
  94. 94.
    Takacs, G., Chandrasekhar, V., Gelfand, N., Xiong, Y., Chen, W.C., Bismpigiannis, T., Grzeszczuk, R., Pulli, K., Girod, B.: Outdoors augmented reality on mobile phone using loxel-based visual feature organization. In: Proceedings of the 1st ACM International Conference on Multimedia Information Retrieval, pp. 427–434. ACM (2008)Google Scholar
  95. 95.
    Tsai, C.M., Qamra, A., Chang, E.Y., Wang, Y.F.: Extent: inferring image metadata from context and content. In: Multimedia and Expo, 2005. ICME 2005. IEEE International Conference on, pp. 1270–1273. IEEE (2005)Google Scholar
  96. 96.
    Tsai, S.S., Chen, D., Chandrasekhar, V., Takacs, G., Cheung, N.M., Vedantham, R., Grzeszczuk, R., Girod, B.: Mobile product recognition. In: Proceedings of the International Conference on Multimedia, pp. 1587–1590. ACM (2010)Google Scholar
  97. 97.
    Tsai, S.S., Chen, D., Takacs, G., Chandrasekhar, V., Singh, J.P., Girod, B.: Location coding for mobile image retrieval. In: Proceedings of the 5th International ICST Mobile Multimedia Communications Conference, p. 8. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering) (2009)Google Scholar
  98. 98.
    Tsai, T.H., Cheng, W.H., You, C.W., Hu, M.C., Tsui, A.W., Chi, H.Y.: Learning and recognition of on-premise signs from weakly labeled street view images. Image Process. IEEE Trans. 23(3), 1047–1059 (2014)MathSciNetCrossRefGoogle Scholar
  99. 99.
    Viana, W., Braga, R., Lemos, F.D., de Souza, J.M., Carmo, R., Andrade, R., Martin, H., et al.: Mobile photo recommendation and logbook generation using context-tagged images. MultiMed. IEEE 21(1), 24–34 (2014)CrossRefGoogle Scholar
  100. 100.
    Xia, J., Gao, K., Zhang, D., Mao, Z.: Geometric context-preserving progressive transmission in mobile visual search. In: Proceedings of the 20th ACM International Conference on Multimedia, pp. 953–956. ACM (2012)Google Scholar
  101. 101.
    Xie, X., Lu, L., Jia, M., Li, H., Seide, F., Ma, W.Y.: Mobile search with multimodal queries. Proc. IEEE 96(4), 589–601 (2008)CrossRefGoogle Scholar
  102. 102.
    Xu, R., Herranz, L., Jiang, S., Wang, S., Song, X., Jain, R.: Geolocalized modeling for dish recognition. Multimed. IEEE Trans. 17(8), 1187–1199 (2015)CrossRefGoogle Scholar
  103. 103.
    Yang, D.S., Lee, Y.H.: Mobile image retrieval using integration of geo-sensing and visual descriptor. In: Network-Based Information Systems (NBiS), 2012 15th International Conference on, pp. 743–748. IEEE (2012)Google Scholar
  104. 104.
    Yap, K.H., Chen, T., Li, Z., Wu, K.: A comparative study of mobile-based landmark recognition techniques. Intell. Syst. IEEE 25(1), 48–57 (2010)CrossRefGoogle Scholar
  105. 105.
    You, C.W., Cheng, W.H., Tsui, A.W., Tsai, T.H., Campbell, A.: Mobilequeue: an image-based queue card management system through augmented reality phones. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing, pp. 651–652. ACM (2012)Google Scholar
  106. 106.
    You, Q., Yuan, J., Wang, J., Guo, P., Luo, J.: Snap n’shop: visual search-based mobile shopping made a breeze by machine and crowd intelligence. In: Semantic Computing (ICSC), 2015 IEEE International Conference on, pp. 173–180. IEEE (2015)Google Scholar
  107. 107.
    Yu, F.X.: Intelligent query formulation for mobile visual search. In: Proceedings of the 19th ACM International Conference on Multimedia, pp. 861–862. ACM (2011)Google Scholar
  108. 108.
    Yu, F.X., Ji, R., Chang, S.F.: Active query sensing for mobile location search. In: Proceedings of the 19th ACM International Conference on Multimedia, pp. 3–12. ACM (2011)Google Scholar
  109. 109.
    Zamir, A.R., Dehghan, A., Shah, M.: Visual business recognition: a multimodal approach. In: ACM Multimedia, pp. 665–668. Citeseer (2013)Google Scholar
  110. 110.
    Zhang, C., Zhang, Y., Zhu, X., Xue, Z., Qin, L., Huang, Q., Tian, Q.: Socio-mobile landmark recognition using local features with adaptive region selection. Neurocomputing (2015). doi:10.1016/j.neucom.2014.10.105
  111. 111.
    Zhang, N., Mei, T., Hua, X.S., Guan, L., Li, S.: Interactive mobile visual search for social activities completion using query image contextual model. In: Multimedia Signal Processing (MMSP), 2012 IEEE 14th International Workshop on, pp. 238–243. IEEE (2012)Google Scholar
  112. 112.
    Zhu, C., Li, K., Lv, Q., Shang, L., Dick, R.P.: iscope: personalized multi-modality image search for mobile devices. In: Proceedings of the 7th International Conference on Mobile Systems, Applications, and Services, pp. 277–290. ACM (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Weiqing Min
    • 1
  • Shuqiang Jiang
    • 1
  • Shuhui Wang
    • 1
  • Ruihan Xu
    • 1
  • Yushan Cao
    • 2
  • Luis Herranz
    • 1
  • Zhiqiang He
    • 3
  1. 1.Key Lab of Intelligent Information ProcessingInstitute of Computing TechnologyBeijingChina
  2. 2.Higher Education Institution Teacher Online Training CenterBeijingChina
  3. 3.Lenovo Corporate ResearchBeijingChina

Personalised recommendations