Skip to main content
Log in

Nonlocal variational image segmentation models on graphs using the Split Bregman

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

Variational functionals such as Mumford-Shah and Chan-Vese methods have a major impact on various areas of image processing. After over 10 years of investigation, they are still in widespread use today. These formulations optimize contours by evolution through gradient descent, which is known for its overdependence on initialization and the tendency to produce undesirable local minima. In this paper, we propose an image segmentation model in a variational nonlocal means framework based on a weighted graph. The advantages of this model are twofold. First, the convexity global minimum (optimum) information is taken into account to achieve better segmentation results. Second, the proposed global convex energy functionals combine nonlocal regularization and local intensity fitting terms. The nonlocal total variational regularization term based on the graph is able to preserve the detailed structure of target objects. At the same time, the modified local binary fitting term introduced in the model as the local fitting term can efficiently deal with intensity inhomogeneity in images. Finally, we apply the Split Bregman method to minimize the proposed energy functional efficiently. The proposed model has been applied to segmentation of real medical and remote sensing images. Compared with other methods, the proposed model is superior in terms of both accuracy and efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zha, Z.J., Hua, X.S., Mei, T., Wang, J., Qi, G.J., Wang, Z.: Joint multi-label multi-instance learning for image classification. In: IEEE Conference on CVPR 2008, pp. 1–8 (2008)

  2. Zha, Z.-J., Yang, L., Mei, T., Wang, M., Wang, Z.: Visual query suggestion. ACM Multimedia 2009, 15–24 (2009)

    Google Scholar 

  3. Zha, Z.J., Yang, L., Mei, T., Wang, M., Wang, Z., Chua, T.S., Hua, X.S.: Visual query suggestion: Towards Capturing User Intent in Internet Image Search. ACM Trans. Multimedia Comput. Commun. Appl. (TOMMCAP): 6(3), Article No. 13 (2010)

    Google Scholar 

  4. Zha, Z.J., Wang, M., Zheng, Y.-T., Yang, Y., Hong, R., Chua, T.: Interactive video indexing with statistical active learning. IEEE Trans. Multimedia 14(1), 17–27 (2012)

    Article  Google Scholar 

  5. Zha, Z.-J., Mei, T., Wang, J., Wang, Z., Hua, X.-S.: Graph based semi-supervised learning with multiple labels. J. Vis. Commun. Image Represent. 20(2), 97–103 (2009)

    Article  Google Scholar 

  6. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 321–331 (1988)

  7. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–80 (1997)

    Article  MATH  Google Scholar 

  8. Malladi, R., Sethian, J.A., Vemuri, B.C.: Evolutionary fronts for topology-independent shape modeling and recovery. Proc. Eur. Conf. Comput. Vis. 3–13 (1994)

  9. Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., Yezzi, A.: Gradient flows and geometric active contour models. Proc. Int. Conf. Comput. Vis. 810–815 (1995)

  10. Osher, S., Sethian, J.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cohen, L.D., Cohen, I.: Finite-element methods for active contour models and balloons for 2-d and 3-d images. IEEE Trans. Pattern Anal. Mach. Intell. 1131–1147 (1993)

  12. Leroy, B., Herlin, I., Cohen, L.D.: Multi-resolution algorithms for active contour models. Proc. 12th Int. Conf. Analysis and Optimization of Systems. 58–65 (1996)

  13. Xiang, Y., Chung, A.C.S., Ye, J.: An active contour model for image segmentation based on elastic interaction. J. Comput. Phys. 219, 455–476 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. He, N., Lu, K.: An improved geometric active contour model for concrete CT image segmentation based on edge flow. Chin. J. Electron. 19(4), 687–690 (2010)

    Google Scholar 

  15. Leventon, M.E., Grimson, W.E.L., Faugeras, O.D.: Statistical shape influencing geodesic active contours. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 316–323 (2000)

  16. Xu, C., Prince, J.: Generalized gradient vector flow external forces for active contours. Signal Process. 131–139 (1998)

  17. Dakua, S.P., Sahambi, J.S.: Modified active contour model and Random Walk approach for left ventricular cardiac MR image segmentation. Int. J. Numer. Methods Biomed. Eng. 7(29), 1350–1361 (2011)

    MathSciNet  Google Scholar 

  18. Wang, X.F., Huang, D.S., Xu, H.: An efficient local Chan-Vese model for image segmentation. Pattern Recognit. 43(2010), 603–618 (2010)

    Article  MATH  Google Scholar 

  19. Miyoun, J., Gabriel, P., Laurent, D.C.: Nonlocal active contours. EMMCVPR SIAM J. Imag. Sci. 5(3), 1022–1054 (2011)

    Google Scholar 

  20. He, N., Zhang, P., Lu, K.: A new deformable model using level sets for shape segmentation. J. Electron. 26(3), 353–358 (2009)

    Google Scholar 

  21. Ke, L., Ning, H., Jian, X.: Content-based similarity for 3D model retrieval and classification. Prog. Nat. Sci. 19(4), 495–499 (2009)

    Article  Google Scholar 

  22. Lu, K., He, N., Li, L.: Non local means based denoising for medical images. Comput. Math. Methods Med. 2012, Article ID 438617 (2012). doi:10.1155/2012/438617

  23. Wang, J., Lu, K., Wang, Q., Jia, J.: Kernel optimization for blind motion deblurring with image edge prior. Math Problems Eng. 2012, Article ID 639824 (2012). doi:10.1155/2012/639824

  24. Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms with a new one. SIAM Mul. Model. Simul. 4(2), 490–530 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Peyré, G., Bougleux, S., Cohen, L.D.: Non-local regularization of inverse problems. ECCV Part III LNCS 5304(2008), 57–68 (2008)

    Google Scholar 

  26. Miyoun, J., Gabriel, P., Lauren, D.C.: Non-local segmentation and in painting. 2011 18th IEEE Int. Conf. Image Process. 2011, 3373–3376 (2011)

  27. Yang, Y., Boying, W.: Convex image segmentation model based on local and global intensity fitting energy and Split Bregman method. J. Appl. Math. 2012 (2012). doi:10.1155/2012/692589

  28. Bresson, X., Chan, T.: Non-local unsupervised variational image segmentation models. UCLA CAM Rep. 2008, 08–67 (2008)

    Google Scholar 

  29. Hong, R., Tang, J., Tan, H.-K., Ngo, C.-W., Yan, S., Chua, T.-S.: Beyond search: event-driven summarization for web videos. TOMCCAP 7(4), 35 (2011)

    Article  Google Scholar 

  30. Wang, M., Hong, R., Li, G., Zha, Z.-J., Yan, S., Chua, T.-S.: Event driven web video summarization by tag localization and key-shot identification. IEEE Trans. Multimedia 14(4), 975–985 (2012)

    Article  Google Scholar 

  31. Gao, Y., Wang, M., Zha, Z., Shen, J., Li, X., Xindong, W.: Visual–textual joint relevance learning for tag-based social image search. IEEE Trans. Image Process. 22(1), 363–376 (2013)

    Article  MathSciNet  Google Scholar 

  32. Gao, Y., Wang, M., Tao, D., Ji, R., Dai, Q.: 3D object retrieval and recognition with hypergraph analysis. IEEE Trans. Image Process. 21(9), 4290–4303 (2012)

    Article  MathSciNet  Google Scholar 

  33. Gao, Y., Tang, J., Hong, R., Yan, S., Dai, Q., Zhang, N., Chua, T.-S.: Camera constraint-free view-based 3D object retrieval. IEEE Trans. Image Process. 21(4), 2269–2281 (2012)

    Article  MathSciNet  Google Scholar 

  34. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. SIAM Multiscale Model. Simul. (MMS) 7(3), 1005–1028 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  35. Boykov, Y., Kolmogorov, V., Cremers, D., Delong, A.: An integral solution to surface evolution PDEs via geo-cuts. Proc. ECCV LCNS 3953, 409–422 (2006)

    Google Scholar 

  36. Zeng, X., Chen,W., Peng, Q.: Efficiently solving the piecewise constant Mumford-Shah model using graph cuts. Technical report, Zhejiang University (2006)

  37. Grady, L.: The piecewise smooth Mumford-Shah functional on an arbitrary graph. IEEE Trans. Image Process. 18(11), 2547–2561 (2009)

    Article  MathSciNet  Google Scholar 

  38. Goldstein, T., Osher, S.: Thesplit Bregman method for L1 regularized problems. SIAM J. Imag. Sci. 2(2), 323–343 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  39. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  40. Li, C., Xu, C., Gui, C., Fox, M. D.: Level set evolution without re-initialization: a new variational formulation. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05). 2005, 430–436 (2005)

Download references

Acknowledgments

This work was supported by the national natural science foundation of China (Grant nos. 61103130, 61271435, 61370138, U1301251); National Program on Key Basic Research Projects (973 programs) (Grant nos. 2010CB731804-1, 2011CB706901-4); Beijing Municipal Natural Science Foundation under Grant (No. 4141003); The Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions (No. IDHT20130225). The Project of Construction of Innovative Teams and Teacher Career Development for Universities and Colleges Under Beijing Municipality (no. CIT&TCD20130513).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, K., Wang, Q., He, N. et al. Nonlocal variational image segmentation models on graphs using the Split Bregman. Multimedia Systems 21, 289–299 (2015). https://doi.org/10.1007/s00530-013-0351-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-013-0351-z

Keywords

Navigation