Multimedia Systems

, Volume 19, Issue 1, pp 65–76 | Cite as

Robust wireless sharing of internet video streams

  • Steven NicholsEmail author
  • Yu Zhang
  • Kien A. Hua
Regular Paper


The gateways are the performance bottleneck of wireless mesh access networks and thus alleviating stress on them is essential to making such wireless networks robust and scalable. Using proxy servers or wireless peer-to-peer streaming techniques can help reduce the gateway load. However, these techniques, because they are data caching methods, do not save wireless resources. We instead consider a communication-sharing approach in this paper. Traditional stream sharing solutions depend on cooperation with the video server. However, in the wireless access network it is difficult to cooperate with online video sites. To address this problem in wireless mesh access networks, we propose a distributed video sharing technique called Dynamic Stream Merging (DSM). DSM is able to improve the robustness of the access network without cooperation from the online video site or the users and has the intelligence to handle sudden spikes in demand for certain videos due to specific events, thereby preventing adverse effects to other daily wireless traffic. The technique can also leverage the 80:20 data access pattern, common for many video applications, to substantially increase the service throughput. We explain the DSM technique, present the system prototype, and discuss the experimental results.


Video streaming Wireless mesh networks Dynamic stream merging 



This material is based upon work supported by the National Science Foundation under Grant Number 0525429. Any opinions, findings, and conclusions or recommendations expressed in this materials are those of the authors and do not necessarily reflect the views of the National Science Foundation.


  1. 1.
    Adobe flash player (2010).
  2. 2.
    Anand, A., Sekar, V., Akella, A.: Smartre: An architecture for coordinated network-wide redundancy elimination. SIGCOMM Comput. Commun. Rev. 39(4), 87–98 (2009). doi:
  3. 3.
  4. 4.
    Banerjee, S., Kommareddy, C., Kar, K., Bhattacharjee, B., Khuller, S.: Construction of an efficient overlay multicast infrastructure for real-time applications, vol. 2. pp. 1521–1531 (2003). doi: 10.1109/INFCOM.2003.1208987
  5. 5.
    Berners-Lee, T., Fielding, R., Frystyk, H.: Hypertext Transfer Protocol—HTTP/1.0. RFC 1945 (Informational) (1996).
  6. 6.
    Cha, M., Kwak, H., Rodriguez, P., Ahn, Y.Y., Moon, S.: Analyzing the video popularity characteristics of large-scale user generated content systems. IEEE/ACM Trans. Netw. 17(5), 1357–1370 (2009). doi: Google Scholar
  7. 7.
    Chi, H.C., Zhang, Q.: Deadline-aware network coding for video on demand service over p2p networks. J. Zhejiang Univ. Sci. A 7, 755–763 (2006). doi: 10.1631/jzus.2006.A0755 Google Scholar
  8. 8.
    Chromium: (2010).
  9. 9.
    Cui, Y., Li, B., Nahrstedt, K.: oStream: asynchronous streaming multicast in application-layer overlay networks. IEEE J. Sel. Areas Commun. 22(1), 91–106 (2004). doi: 10.1109/JSAC.2003.818799 Google Scholar
  10. 10.
    Dogar, F.R., Phanishayee, A., Pucha, H., Ruwase, O., Andersen, D.G.: Ditto: A system for opportunistic caching in multi-hop wireless networks. In: Proceedings of the 14th ACM international conference on Mobile computing and networking, MobiCom ’08, pp. 279–290. ACM, New York, NY, USA (2008). doi:  10.1145/1409944.1409977
  11. 11.
    Freed, N., Borenstein, N.: RFC 2046 Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types. RFC 2046 (Draft Standard) (1996).
  12. 12.
    Hosseini, M., Ahmed, D.T., Shirmohammadi, S., Georganas, N.D.: A survey of application-layer multicast protocols. IEEE Commun. Surveys and Tutorials (2007)Google Scholar
  13. 13.
    Hua, K., Tran, D.A., Zhang, Y.: Range multicast for video on demand. In: Proceedings of International Conference on Computer Communications and Networks (IC3N02), pp. 210–215 (2003)Google Scholar
  14. 14.
    Hua, K.A., Cai, Y., Sheu, S.: Patching: A multicast technique for true video-on-demand services. In: MULTIMEDIA ’98: Proceedings of the sixth ACM international conference on Multimedia, pp. 191–200. ACM, New York, NY, USA (1998). doi:
  15. 15.
    Hua, K.A., Sheu, S.: Skyscraper broadcasting: a new broadcasting scheme for metropolitan video-on-demand systems. SIGCOMM Comput. Commun. Rev. 27(4), 89–100 (1997). doi:
  16. 16.
    Hua, K.A., Tantaoui, M.A., Tavanapong, W.: Video delivery technologies for large-scale deployment of multimedia applications. In: Proceedings of the IEEE, pp. 1439–1451 (2004)Google Scholar
  17. 17.
    Ji, L., Corson, M.S.: Differential destination multicast—A MANET multicast routing protocol for small groups (2001)Google Scholar
  18. 18.
    Juhn, L.S., Tseng, L.M.: Harmonic broadcasting for video-on-demand service. IEEE Trans. Broadcast. 43(3), 268–271 (1997). doi: 10.1109/11.632927 CrossRefGoogle Scholar
  19. 19.
    Leu, J.S., Tsai, C.W.: Practical design of a proxy agent to facilitate adaptive video streaming service across wired/wireless networks. J. Syst. Softw. 82, 1916–1925 (2009). doi: 10.1016/j.jss.2009.06.026. URL
  20. 20.
    Li, Y., Chen, I.R.: Appccm: Adaptive per-user per-object cache consistency management for mobile client-server applications in wireless mesh networks. In: Local Computer Networks (LCN), 2010 IEEE 35th Conference on, pp. 128 –135 (2010). doi: 10.1109/LCN.2010.5735686
  21. 21.
    Li, Z., Zhu, X., Begen, A.C., Girod, B.: Peer-assisted packet loss repair for IPTV video multicast. In: MM ’09: Proceedings of the seventeen ACM international conference on Multimedia, pp. 401–410. ACM, New York, NY, USA (2009). doi:
  22. 22.
    Magharei, N., Rejaie, R.: Prime: Peer-to-peer receiver-driven mesh-based streaming. IEEE/ACM Trans. Netw. 17(4), 1052–1065 (2009). doi: 10.1109/TNET.2008.2007434 CrossRefGoogle Scholar
  23. 23.
    Martynov, M.: Experimental study of protocol-independent redundancy elimination algorithms. In: WOSP/SIPEW ’10: Proceedings of the First Joint WOSP/SIPEW International Conference on Performance Engineering, pp. 141–146. ACM, New York, NY, USA (2010). doi:
  24. 24.
  25. 25.
    Rawlinson, L., Hunt, N.: Jackson dies, almost takes internet with him (2009).
  26. 26.
    Royer, E.M., Perkins, C.E.: Multicast operation of the ad-hoc on-demand distance vector routing protocol. In: MobiCom ’99: Proceedings of the 5th annual ACM/IEEE International Conference on Mobile Computing and Networking, pp. 207–218. ACM, New York, NY, USA (1999). doi:
  27. 27.
    Shen, Z., Zimmermann, R.: Isp-friendly peer selection in p2p networks. In: MM ’09: Proceedings of the Seventeen ACM International Conference on Multimedia, pp. 869–872. ACM, New York, NY, USA (2009). doi:
  28. 28.
    Tran, D., Hua, K., Do, T.: Zigzag: an efficient peer-to-peer scheme for media streaming. vol. 2, pp. 1283–1292 (2003). doi: 10.1109/INFCOM.2003.1208964
  29. 29.
    Wireshark: (2010).
  30. 30.
    Wu, C., Tay, Y.: AMRIS: A multicast protocol for ad hoc wireless networks. 1, 25–29 (1999). doi: 10.1109/MILCOM.1999.822636
  31. 31.
    Xie, F., Hua, K.A., Jiang, N.: A cross-layer framework for video-on-demand service in multi-hop wimax mesh networks. Comput. Commun. 31(8), 1615–1626 (2008). doi:
  32. 32.
    Ye, J., Hua, K.A.: Scalability study of wireless mesh networks with dynamic stream merging capability. In: Multimedia Communications, Services and Security (MCSS), 2011 Sensor Mesh and Ad Hoc Communications and Networks (SECON), 2010 4th International Conference on (2011)Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.School of Electrical Engineering and Computer ScienceUniversity of Central FloridaOrlandoUSA

Personalised recommendations