Skip to main content
Log in

Buffer-assisted on-demand multicast for VOD applications

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

Multicast communications is widely used by streaming video applications to reduce both server load and network bandwidth. However, receivers in a multicast group must access the multicast stream simultaneously, and this restriction on synchronous access diminishes the benefit of multicast because users in a video-on-demand service usually issue requests asynchronously, i.e., at anytime. In this paper, we not only formulate this streaming problem but also propose a new multicast infrastructure, called buffer-assisted on-demand multicast, to allow receivers accessing a multicast stream asynchronously. A timing control mechanism is integrated on intermediate routing nodes (e.g., routers, proxies, or peer nodes in a peer-to-peer network) to branch time-variant multicast sub-streams to corresponding receivers. Besides, an optimal routing path and the corresponding buffer allocations for each request must be carefully determined to maximize the throughput of the multicast stream. We prove that the time complexity to solve this routing problem over general graph networks is NP-complete, and then propose a routing algorithm for overlay networks to minimize server load. Simulation results demonstrate that buffer-assisted on-demand multicast outperforms many popular streaming methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almeroth K.C., Ammar M.H. (1996) The use of multicast delivery to provide a scalable and interactive video-on-demand service. IEEE J. Selected Areas Commun. 14, 1110–1122

    Article  Google Scholar 

  2. da Fonseca N.L.S., Facanha R.D.A. (2002) The look-ahead-maximize-batch batching policy. IEEE Trans. Multimedia 4, 114–120

    Article  Google Scholar 

  3. Viswanathan S., Imielinski T. (1996) Metropolitan area video-on-demand service using pyramid broadcasting. Multimedia Syst. 4, 197–208

    Article  Google Scholar 

  4. Aggarwal C.C., Wolf J.L., Yu P.S. A permutation-based pyramid broadcasting scheme for video-on-demand systems. In: Proceedings of IEEE International Conference on Multimedia Computing and Systems, pp. 118–126 (1996)

  5. Hua K.A., Sheu S. Skyscraper broadcasting: a new broadcasting scheme for metropolitan video-on-demand systems. In: Proceedings of ACM SIGCOMM, pp. 89–100 (1997)

  6. Juhn L.-S., Tseng L.-M. (1998) Fast data broadcasting and receiving scheme for popular video service. IEEE Trans. Broadcast. 44, 100–105

    Article  Google Scholar 

  7. Juhn L.-S., Tseng L.-M. (1997) Harmonic broadcasting for video-on-demand service. IEEE Trans. Broadcast. 43, 268–271

    Article  Google Scholar 

  8. Carter S., Long D. Improving video-on-demand server efficiency through stream tapping. In: Proceedings of International Conference on Computer Communication and Networks, pp. 200–207 (1997)

  9. Hua K.A., Cai Y., Sheu S. Patching: a multicast technique for true video-on-demand services. In: Proceedings of ACM Multimedia, pp. 191–200 (1998)

  10. Cai Y., Hua K.A., Vu K. Optimizing patching performance. In: Proceedings of IS&T/SPIE Multimedia Computing and Networking Conference, pp. 204–215 (1999)

  11. Sen S., Gao L., Rexford J., Towsley D. Optimal patching scheme for efficient multimedia streaming. In: Proceedings of IEEE International Conference on Multimedia Computing and Systems (1996)

  12. Ramesh S., Rhee I., Guo K. (2001) Multicast with cache (mcache): an adaptive zero-delay video-on-demand service. IEEE Trans. Circuits Syst. Video Technol. 11, 440–456

    Article  Google Scholar 

  13. Hua K.A., Sheu S., Wang J.Z. Earthworm: a network memory management technique for large-scale distributed multimedia applications. In: Proceedings of IEEE INFOCOM’97, vol. 3, pp. 990–997 (1997)

  14. Sheu S., Hua K.A., Tavanapong W. Chaining: a generalized batching technique for video-on-demand systems. In: Proceedings of International Conference on Multimedia Computing and Systems, pp. 110–117 (1997)

  15. Hua K.A., Tran D.A. (2005) Range multicast for video on demand. Multimedia Tools Appl. 27(3): 367–391

    Article  Google Scholar 

  16. Tran D.A., Hua K.A., Do T.T. Layered range multicast for video on demand. In: Proceedings of IEEE International Conference on Computer Communications and Networks (IC3N 2002), pp. 210–215 (2002)

  17. Dan A., Sitaram D. Buffer management policy for an on-demand video server. IBM research report RC 19347

  18. Liu J., Xu J. (2004) Proxy caching for media streaming over the internet. IEEE Commun. 42, 88–94

    Google Scholar 

  19. Tennenhouse D.L., Smith J.M., Sincoskie W.D., Wetherall D.J., Minden G.J. (1997) A survey of active network research. IEEE Commun. 35, 80–86

    Article  Google Scholar 

  20. Calderon M., Sedano M., Azcorra A., Alonsa C. (1998) Active network support for multicast applications. IEEE Netw. 12, 46–52

    Article  Google Scholar 

  21. Napster, http://www.napster.com

  22. KaZaA, http://www.kazaa.com

  23. eDonkey, http://www.edonkey2000.com

  24. Morpheus, http://www.musiccity.com

  25. Matei R., Iamnitchi A., Foster P. (2002) Mapping the Gnutella network. IEEE Internet Comput. 6, 50–57

    Article  Google Scholar 

  26. Ratnasamy S., Francis P., Handley M., Karp R., Shenker S. A scalable content-addressable network. In: Proceedings of ACM SIGCOMM, pp. 161–172 (2001)

  27. Stoica I., Morris R., Liben-Nowell D., Karger D.R., Kaashoek M.F., Dabek F., Balakrishnan H. (2003) Chord: a scalable peer-to-peer lookup protocol for Internet applications. IEEE/ACM Trans. Netw. 11, 17–32

    Article  Google Scholar 

  28. Zhao B.Y., Huang L., Stribling J., Rhea S.C., Joseph A.D., Kubiatowicz J.D. (2004) Tapestry: a resilient global-scale overlay for service deployment. IEEE J. Selected Areas Commun. 22, 41–53

    Article  Google Scholar 

  29. Rowstron A., Druschel P. Pastry: scalable, distributed object location and routing for large-scale peer-to-peer systems. In: Proceedings of IFIP/ACM International Conference on Distributed Systems Platforms (Middleware), pp. 329–350 (2001)

  30. Garey M.R., Johnson D.S. Computers and Interactability: A Guide to Theory of NP-completeness W.H. Freeman and Co., San Francisco (1979)

  31. Ratnasamy S., Shenker S., Stoica I. Routing algorithms for DHTs: some open questions. In: Proceedings of International Working on Peer-to-Peer Systems (IPTPS), pp. 45–52 (2002)

  32. Castro M., Druschel P., Hu Y.C., Rowstron A. Topology-aware routing in structured peer-to-peer overlay networks. Tech. Rep. MSR-TR-2002-82, Microsoft Research, One Microsoft Way, Redmond, 98052 (2002)

  33. Wang H., Zhu Y., Hu Y. To unify structured and unstructured P2P systems. In: Proceedings of IEEE International Parallel and Distributed Processing Symposium, pp. 104a–104a (2005)

  34. Zhuang S.Q., Zhao B.Y., Joseph A.D., Katz R.H., Kubiatowicz J. Bayeux: an architecture for scalable and fault-tolerant wide-area data dissemination. In: Proceedings of NOSSDAV’01, pp. 11–20 (2001)

  35. Castro M., Druschel P., Kermarrec A.-M., Rowstron A.I.T. (2002) Scribe: a large-scale and decentralized application-level multicast infrastructure. IEEE J. Selected Areas Commun. 20, 1489–1499

    Article  Google Scholar 

  36. Tran D.A., Hua K.A., Do T.T. ZIGZAG: an efficient peer-to-peer scheme for media streaming. In: Proceedings of IEEE INFOCOM’03, vol. 2, pp. 1283–1292 (2003)

  37. Chan C.-L., Huang S.-Y., Wang J.-S.: Cooperative cache framework for video streaming applications. In: Proceedings of IEEE International Conference on Multimedia and Expo, pp. 313–316 (2003)

  38. Liao W., Li V.O.K.(1997) The split and merge protocol for interactive video-on-demand systems. IEEE Multimedia, 4, 51–62

    Article  Google Scholar 

  39. Guo M., Ammar M.H. Scalable live video streaming to cooperative clients using time shifting and video patching. In: Proceedings of INFOCOM 2004, vol. 3, pp. 1501–1511 (2004)

  40. Tran M., Tavanapong W., Putthividhya W. An overlay caching scheme for overlay networks. Multimedia Tools Appl. (to appear)

  41. Jin S., Bestavros A. Cache and relay streaming media delivery for asynchronous clients. In: Proceedings of International Working on Networked Group Communication (2002)

  42. Guo Y., Suh K., Kurose J., Towsley D. P2Cast: peer-to-peer patching scheme for VoD service. In: Proceedings of International World Wide Web Conference, pp. 301–309 (2003)

  43. Zhou M., Liu J. Tree-assisted gossiping for overlay video distribution. Kluwer Multimedia Tools Appl. (to appear, 2006)

  44. Chen J.K., Wu J.-L.C. (1999) Adaptive chaining scheme for distributed VOD applications. IEEE Trans. Broadcast. 45, 215–224

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen-Lung Chan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, CL., Huang, SY., Su, TC. et al. Buffer-assisted on-demand multicast for VOD applications. Multimedia Systems 12, 89–100 (2006). https://doi.org/10.1007/s00530-006-0041-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-006-0041-1

Keywords

Navigation