Skip to main content
Log in

Phase transition of an anisotropic Ginzburg–Landau equation

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study the effective geometric motions of an anisotropic Ginzburg–Landau equation with a small parameter \(\varepsilon >0\) which characterizes the width of the transition layer. For well-prepared initial datum, we show that as \(\varepsilon \) tends to zero the solutions will develop a sharp interface limit which evolves under mean curvature flow. The bulk limits of the solutions correspond to a vector field \({\textbf{u}}(x,t)\) which is of unit length on one side of the interface, and is zero on the other side. The proof combines the modulated energy method and weak convergence methods. In particular, by a (boundary) blow-up argument we show that \({\textbf{u}}\) must be tangent to the sharp interface. Moreover, it solves a geometric evolution equation for the Oseen–Frank model in liquid crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. For a square matrix A, the decomposition \(A=\frac{A+A^{{\textsf{T}}}}{2}+\frac{A-A^{{\textsf{T}}}}{2}\) is orthogonal under the Frobenius inner product \(A:B\triangleq {\text {tr}}(A^{{\textsf{T}}} B)\).

References

  1. Alikakos, N.D., Bates, P.W., Chen, X.: Convergence of the Cahn–Hilliard equation to the Hele–Shaw model. Arch. Rational Mech. Anal. 128(2), 165–205 (1994)

    MathSciNet  Google Scholar 

  2. Ambrosio, L.: A new proof of the SBV compactness theorem. Calc. Var. Partial Differ. Equ. 3(1), 127–137 (1995)

    MathSciNet  Google Scholar 

  3. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs, Oxford University Press, New York (2000)

    Google Scholar 

  4. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics, 2nd edn. Birkhäuser Verlag, Basel (2008)

    Google Scholar 

  5. Ball, J.M.: Mathematics and liquid crystals. Mol. Cryst. Liq. Cryst. 647(1), 1–27 (2017)

    Google Scholar 

  6. Barles, G., Soner, H.M., Souganidis, P.E.: Front propagation and phase field theory. SIAM J. Control Optim. 31(2), 439–469 (1993)

    MathSciNet  Google Scholar 

  7. Brezis, H., Marcus, M.: Hardy’s Inequalities Revisited, vol. 25, pp. 217–237 (1998). 1997. Dedicated to Ennio De Giorgi

  8. Bronsard, L., Stoth, B.: The singular limit of a vector-valued reaction–diffusion process. Trans. Am. Math. Soc. 350(12), 4931–4953 (1998)

    MathSciNet  Google Scholar 

  9. Caffarelli, L.A., Yang, Y.S.: Vortex condensation in the Chern–Simons Higgs model: an existence theorem. Commun. Math. Phys. 168(2), 321–336 (1995)

    MathSciNet  Google Scholar 

  10. Chapman, S.J., Du, Q., Gunzburger, M.D.: On the Lawrence–Doniach and anisotropic Ginzburg–Landau models for layered superconductors. SIAM J. Appl. Math. 55(1), 156–174 (1995)

    MathSciNet  Google Scholar 

  11. Chen, X.: Global asymptotic limit of solutions of the Cahn–Hilliard equation. J. Differ. Geom. 44(2), 262–311 (1996)

    MathSciNet  Google Scholar 

  12. Chen, X., Hilhorst, D., Logak, E.: Mass conserving Allen–Cahn equation and volume preserving mean curvature flow. Interfaces Free Bound. 12(4), 527–549 (2010)

    MathSciNet  Google Scholar 

  13. Chen, Y.G., Giga, Y., Goto, S.: Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J. Differ. Geom. 33(3), 749–786 (1991)

    MathSciNet  Google Scholar 

  14. Chen, Y.M., Struwe, M.: Existence and partial regularity results for the heat flow for harmonic maps. Math. Z. 201(1), 83–103 (1989)

    MathSciNet  Google Scholar 

  15. De Mottoni, P., Schatzman, M.: Geometrical evolution of developed interfaces. Trans. Am. Math. Soc. 347(5), 1533–1589 (1995)

    MathSciNet  Google Scholar 

  16. DiPerna, R.J., Lions, P.-L.: On the Cauchy problem for Boltzmann equations: global existence and weak stability. Ann. Math. (2) 130(2), 321–366 (1989)

    MathSciNet  Google Scholar 

  17. Du, H., Huang, T., Wang, C.: Weak compactness of simplified nematic liquid flows in 2d (2020). arXiv preprint arXiv:2006.04210

  18. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Textbooks in Mathematics, revised CRC Press, Boca Raton (2015)

    Google Scholar 

  19. Evans, L.C., Soner, H.M., Souganidis, P.E.: Phase transitions and generalized motion by mean curvature. Commun. Pure Appl. Math. 45(9), 1097–1123 (1992)

    MathSciNet  Google Scholar 

  20. Evans, L.C., Spruck, J.: Motion of level sets by mean curvature I. J. Differ. Geom. 33(3), 635–681 (1991)

    MathSciNet  Google Scholar 

  21. Fei, M., Lin, F., Wang, W., Zhang, Z.: Matrix-valued Allen–Cahn equation and the Keller–Rubinstein–Sternberg problem. Invent. Math. 233(1), 1–80 (2023)

    MathSciNet  Google Scholar 

  22. Fei, M., Wang, W., Zhang, P., Zhang, Z.: On the Isotropic–Nematic phase transition for the liquid crystal. Peking Math. J. 1(2), 141–219 (2018)

    MathSciNet  Google Scholar 

  23. Fischer, J., Hensel, S.: Weak-strong uniqueness for the Navier–Stokes equation for two fluids with surface tension. Arch. Ration. Mech. Anal. 236(2), 967–1087 (2020)

    MathSciNet  Google Scholar 

  24. Fischer, J., Laux, T., Simon, T.M.: Convergence rates of the Allen–Cahn equation to mean curvature flow: a short proof based on relative entropies. SIAM J. Math. Anal. 52(6), 6222–6233 (2020)

    MathSciNet  Google Scholar 

  25. Fonseca, I., Müller, S.: Relaxation of quasiconvex functionals in \({\rm BV}(\Omega,{ R}^p)\) for integrands \(f(x, u,\nabla u)\). Arch. Rational Mech. Anal. 123(1), 1–49 (1993)

    MathSciNet  Google Scholar 

  26. Giaquinta, M., Martinazzi, L.: An introduction to the regularity theory for elliptic systems, harmonic maps and minimal graphs, volume 11 of Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)], 2nd edn. Edizioni della Normale, Pisa (2012)

  27. Golovaty, D., Novack, M., Sternberg, P., Venkatraman, R.: A model problem for Nematic–Isotropic transitions with highly disparate elastic constants. Arch. Ration. Mech. Anal. 236(3), 1739–1805 (2020)

    MathSciNet  Google Scholar 

  28. Golovaty, D., Sternberg, P., Venkatraman, R.: A Ginzburg–Landau-type problem for highly anisotropic nematic liquid crystals. SIAM J. Math. Anal. 51(1), 276–320 (2019)

    MathSciNet  Google Scholar 

  29. Han, J., Luo, Y., Wang, W., Zhang, P., Zhang, Z.: From microscopic theory to macroscopic theory: a systematic study on modeling for liquid crystals. Arch. Ration. Mech. Anal. 215(3), 741–809 (2015)

    MathSciNet  Google Scholar 

  30. Hardt, R., Kinderlehrer, D., Lin, F.-H.: Existence and partial regularity of static liquid crystal configurations. Commun. Math. Phys. 105(4), 547–570 (1986)

    MathSciNet  Google Scholar 

  31. Hong, J., Kim, Y., Pac, P.Y.: Multivortex solutions of the abelian Chern–Simons–Higgs theory. Phys. Rev. Lett. 64(19), 2230–2233 (1990)

    MathSciNet  Google Scholar 

  32. Huisken, G.: Asymptotic behavior for singularities of the mean curvature flow. J. Differ. Geom. 31(1), 285–299 (1990)

    MathSciNet  Google Scholar 

  33. Hutchinson, J.E., Tonegawa, Y.: Convergence of phase interfaces in the van der Waals–Cahn–Hilliard theory. Calc. Var. Partial Differ. Equ. 10(1), 49–84 (2000)

    MathSciNet  Google Scholar 

  34. Ilmanen, T.: Convergence of the Allen–Cahn equation to Brakke’s motion by mean curvature. J. Differ. Geom. 38(2), 417–461 (1993)

    MathSciNet  Google Scholar 

  35. Iyer, G., Xu, X., Zarnescu, A.D.: Dynamic cubic instability in a 2D \(Q\)-tensor model for liquid crystals. Math. Models Methods Appl. Sci. 25(8), 1477–1517 (2015)

    MathSciNet  Google Scholar 

  36. Jackiw, R., Weinberg, E.J.: Self-dual Chern–Simons vortices. Phys. Rev. Lett. 64(19), 2234–2237 (1990)

    MathSciNet  Google Scholar 

  37. Jerrard, R.L., Smets, D.: On the motion of a curve by its binormal curvature. J. Eur. Math. Soc. 17(6), 1487–1515 (2015)

    MathSciNet  Google Scholar 

  38. Kortum, J.: Concentration-cancellation in the Ericksen–Leslie model. Calc. Var. Partial Differ. Equ. 59(6), 16 (2020)

    MathSciNet  Google Scholar 

  39. Krylov, N.V.: Lectures on Elliptic and Parabolic Equations in Sobolev Spaces. Graduate Studies in Mathematics, vol. 96. American Mathematical Society, Providence (2008)

    Google Scholar 

  40. Laux, T., Liu, Y.: Nematic–isotropic phase transition in liquid crystals: a variational derivation of effective geometric motions. Arch. Ration. Mech. Anal. 241(3), 1785–1814 (2021)

    MathSciNet  Google Scholar 

  41. Leoni, G.: A First Course in Sobolev Spaces. Graduate Studies in Mathematics, vol. 18, 2nd edn. American Mathematical Society, Providence (2017)

    Google Scholar 

  42. Lin, F., Wang, C.: The Analysis of Harmonic Maps and Their Heat Flows. World Scientific Publishing Co. Pte. Ltd., Hackensack (2008)

    Google Scholar 

  43. Lin, F., Wang, C.: Isotropic–Nematic phase transition and liquid crystal droplets. Commun. Pure Appl. Math. 76(9), 1728–1792 (2023)

    MathSciNet  Google Scholar 

  44. Lin, F.-H., Poon, C.: On Ericksen’s model for liquid crystals. J. Geom. Anal. 4(3), 379–392 (1994)

    MathSciNet  Google Scholar 

  45. Liu, Y., Lu, X.Y., Xu, X.: Regularity of a gradient flow generated by the anisotropic Landau–de Gennes energy with a singular potential. SIAM J. Math. Anal. 53(3), 3338–3365 (2021)

    MathSciNet  Google Scholar 

  46. Modica, L.: A gradient bound and a Liouville theorem for nonlinear Poisson equations. Commun. Pure Appl. Math. 38(5), 679–684 (1985)

    MathSciNet  Google Scholar 

  47. Pisante, A., Punzo, F.: Allen–Cahn approximation of mean curvature flow in Riemannian manifolds I, uniform estimates. Ann. Sci. Norm. Super. Pisa Cl. Sci. (5) 15, 309–341 (2016)

    MathSciNet  Google Scholar 

  48. Röger, M., Schätzle, R.: On a modified conjecture of De Giorgi. Math. Z. 254(4), 675–714 (2006)

    MathSciNet  Google Scholar 

  49. Saint-Raymond, L.: Hydrodynamic Limits of the Boltzmann Equation. Lecture Notes in Mathematics, vol. 1971. Springer, Berlin (2009)

    Google Scholar 

  50. Sato, N.: A simple proof of convergence of the Allen–Cahn equation to Brakke’s motion by mean curvature. Indiana Univ. Math. J. 57(4), 1743–1751 (2008)

    MathSciNet  Google Scholar 

  51. Schlag, W.: Schauder and \(L^p\) estimates for parabolic systems via Campanato spaces. Commun. Partial Differ. Equ. 21(7–8), 1141–1175 (1996)

    Google Scholar 

  52. Simon, J.: Compact sets in the space \(L^p(0, T;B)\). Ann. Mat. Pura Appl. 4(146), 65–96 (1987)

    Google Scholar 

  53. Soner, H.M.: Ginzburg–Landau equation and motion by mean curvature I. Convergence. J. Geom. Anal. 7(3), 437–475 (1997)

    MathSciNet  Google Scholar 

  54. Tonegawa, Y.: Integrality of varifolds in the singular limit of reaction–diffusion equations. Hiroshima Math. J. 33(3), 323–341 (2003)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

Y. Liu is partially supported by NSF of China under Grant 11971314. We thank an anonymous referee for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuning Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Yoshihiro Tonegawa.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Proposition 1.1

Proof of Proposition 1.1

We first recall that \(\sigma =1\) (cf. (2.5)), \(I_0\subset \Omega \) is the initial interface and \(\eta _0\) is the cut-off function in (2.12). Then we define

$$\begin{aligned} s_\varepsilon (x):= \eta _0\left( x \right) \theta \left( \frac{d_{I_0}(x)}{\varepsilon }\right) +\Big (1-\eta _0\left( x \right) \Big ){\textbf{1}}_{\Omega ^+_0}, \end{aligned}$$
(A.1)

where \(\theta (z)\) is the solution of the ODE

$$\begin{aligned} -\theta ''(z)+f'(\theta )=0,\quad \theta (-\infty )=0,~\theta (+\infty )=1. \end{aligned}$$
(A.2)

We note that \(d_{I_0}\) is Lipschitz continuous in \(\Omega \), and thus by Rademacher’s theorem we have \(|\nabla d_{I_0}|\leqslant 1\) a.e. in \(\Omega \). Recalling (1.19), we define

$$\begin{aligned} {\textbf{u}}_\varepsilon ^{in} (x):=s_\varepsilon (x) {\textbf{u}}^{in}(x). \end{aligned}$$
(A.3)

One can verify that \({\textbf{u}}_\varepsilon ^{in}\in W^{1,2}_0(\Omega )\cap L^\infty (\Omega )\), \(\Vert {\textbf{u}}_\varepsilon ^{in}\Vert _{L^\infty (\Omega )}\leqslant 1\), and

$$\begin{aligned} {\textbf{u}}_\varepsilon ^{in}=\left\{ \begin{array}{ll} {\textbf{u}}^{in} &{} \quad \text {if}~ x\in \Omega ^+_0\backslash B_{2\delta _0}(I_0),\\ \theta \left( \frac{d_{I_0}}{\varepsilon }\right) {\textbf{u}}^{in} &{} \quad \text {if}~ x\in B_{\delta _0}(I_0),\\ 0&{}\quad \text {if}~ x\in \Omega ^-_0\backslash B_{2\delta _0}(I_0). \end{array} \right. \end{aligned}$$
(A.4)

So the condition (1.14a) is verified. To verify the others, we first compute the modulated energy in (1.7) for the initial datum \({\textbf{u}}_\varepsilon ^{in} \). We write (A.1) as

$$\begin{aligned} s_\varepsilon (x)= \theta \left( \frac{d_{I_0}(x)}{\varepsilon }\right) +{\hat{s}}_\varepsilon (x), \end{aligned}$$
(A.5)

where \( {\hat{s}}_\varepsilon (x):=\left( 1-\eta _0\left( x \right) \right) \left( {\textbf{1}}_{\Omega ^+_0} -\theta \left( \frac{d_{I_0}(x)}{\varepsilon }\right) \right) \). Invoking (2.12) and the exponential convergence of \(\theta (z)\) as \(z\rightarrow \pm \infty \) (cf. (A.2)), we deduce that

$$\begin{aligned} \Vert {\hat{s}}_\varepsilon \Vert _{L^\infty (\Omega )}+\Vert \nabla {\hat{s}}_\varepsilon \Vert _{L^\infty (\Omega )}\leqslant Ce^{-\frac{C}{\varepsilon }}, \end{aligned}$$
(A.6)

for some constant \(C>0\) that only depends on \(I_0\). By a Taylor’s expansion, we find

$$\begin{aligned} F({\textbf{u}}_\varepsilon ^{in} )=f(\theta +{\hat{s}}_\varepsilon )=f(\theta )+ O(e^{-C/\varepsilon }). \end{aligned}$$

Combining (A.3), (A.5) with (A.6), we obtain

$$\begin{aligned} |\nabla {\textbf{u}}_\varepsilon ^{in} |^2= \varepsilon ^{-2}\theta '^2 +\theta ^2 |\nabla {\textbf{u}}^{in}|^2+O(e^{-C/\varepsilon })(|\nabla {\textbf{u}}^{in}|^2+1). \end{aligned}$$

Note that we have also employed the identities \(\partial _{x_i} {\textbf{u}}^{in}\cdot {\textbf{u}}^{in}=0\) a.e. in \(\Omega \). Recalling (1.8), we have

$$\begin{aligned} \psi _\varepsilon \Big |_{t=0}=\int _0^{\theta +{\hat{s}}_\varepsilon }\sqrt{2f(s)}\, ds: \Omega \mapsto [0,1]. \end{aligned}$$
(A.7)

So we can compute

$$\begin{aligned}&\frac{\varepsilon }{2} \left| \nabla {\textbf{u}}_\varepsilon ^{in}\right| ^2+\frac{1}{\varepsilon } F({\textbf{u}}_\varepsilon ^{in})-\varvec{\xi }\cdot \nabla \psi _\varepsilon \Big |_{t=0}\nonumber \\ =&\frac{1}{2\varepsilon } \theta '^2 +\frac{1}{\varepsilon } f(\theta )-\varepsilon ^{-1} \varvec{\xi }\cdot {\textbf{n}}_{I_0} \theta ' \sqrt{2f(\theta )}+\frac{\varepsilon }{2}\theta ^2 |\nabla {\textbf{u}}^{in}|^2+O(e^{-C/\varepsilon })(|\nabla {\textbf{u}}^{in}|^2+1). \end{aligned}$$
(A.8)

It follows from (2.10) that \(1-\varvec{\xi }\cdot {\textbf{n}}_{I_0}=O(d_I^2)\). So we have

$$\begin{aligned} \varepsilon ^{-1} \varvec{\xi }\cdot {\textbf{n}}_{I_0} \theta ' \sqrt{2f(\theta )}=\varepsilon ^{-1} \theta ' \sqrt{2f(\theta )}+O(e^{-C/\varepsilon })+ \varepsilon ^{-1} O(d_{I_0}^2) \theta ' \sqrt{2f(\theta )}. \end{aligned}$$

Note that the last term can be written as

$$\begin{aligned} \varepsilon ^{-1} O(d_{I_0}^2) \theta ' \sqrt{2f(\theta )}= O(\varepsilon )z^2 \theta '(z) \sqrt{2f(\theta (z))}\big |_{z= \frac{d_{I_0}(x)}{\varepsilon } }. \end{aligned}$$

Substituting the above two equations into (A.8), we find

$$\begin{aligned}&\int _\Omega \left( \frac{\varepsilon }{2} \left| \nabla {\textbf{u}}_\varepsilon ^{in}\right| ^2+\frac{1}{\varepsilon } F({\textbf{u}}_\varepsilon ^{in})-\varvec{\xi }\cdot \nabla \psi _\varepsilon \right) \, dx\nonumber \\&\quad = \int _\Omega \underbrace{\left( \frac{1}{2\varepsilon } \theta '^2 +\frac{1}{\varepsilon } f(\theta )-\frac{1}{\varepsilon } \theta ' \sqrt{2f(\theta ) }\right) }_{=0}\,dx\nonumber \\&\quad \quad +\int _\Omega \frac{\varepsilon }{2}\theta ^2 |\nabla {\textbf{u}}^{in}|^2\,dx+O(e^{-C/\varepsilon })\int _\Omega (|\nabla {\textbf{u}}^{in}|^2+1)\,dx +O(\varepsilon )\qquad \text { at } t=0. \end{aligned}$$
(A.9)

Note that the integrand of the first integral on the right-hand side of (A.9) vanishes due to the identity \(\theta '^2(z)=2f(\theta (z))\), which follows from (A.2). Now we turn to the first term in (1.7). Using (A.6) we can estimate

$$\begin{aligned} |{\text {div}}{\textbf{u}}_\varepsilon ^{in}|^2\leqslant 2|\nabla \theta \cdot {\textbf{u}}^{in}|^2+2\theta ^2|{\text {div}}{\textbf{u}}^{in}|^2+O(e^{-C/\varepsilon })(1+|{\text {div}}{\textbf{u}}^{in}|^2). \end{aligned}$$
(A.10)

By the exponential decay of \(\theta '(z)\) as \(z\rightarrow \pm \infty \), we deduce that

$$\begin{aligned} |\nabla \theta \cdot {\textbf{u}}^{in}|={\left\{ \begin{array}{ll} \Big |\frac{d_{I_0} }{\varepsilon }\theta '\left( \frac{d_{I_0} }{\varepsilon }\right) \frac{{\textbf{u}}^{in}\cdot {\textbf{n}}_{I_0}}{d_{I_0} }\Big |\leqslant C\Big | \frac{{\textbf{u}}^{in}\cdot {\textbf{n}}_{I_0}}{d_{I_0}}\Big |\quad \text { in } B_{\delta _0}(I_0)\backslash I_0,\\ \\ \Big |\frac{1}{\varepsilon }\theta '\left( \frac{d_{I_0} }{\varepsilon }\right) {\textbf{u}}^{in}\cdot {\textbf{n}}_{I_0}\Big |\leqslant e^{-\frac{C}{\varepsilon }}\quad \qquad \text { in } \Omega \backslash B_{\delta _0}(I_0). \end{array}\right. } \end{aligned}$$
(A.11)

Using this, (1.19) and Hardy’s inequality (cf. [7]), we find

$$\begin{aligned} \int _\Omega |\nabla \theta \cdot {\textbf{u}}^{in}|^2\, dx&\leqslant C \int _{I_0}\int _{-\delta _0}^{\delta _0} \Big | \frac{{\textbf{u}}^{in}\cdot {\textbf{n}}_{I_0}}{d_{I_0}}\Big |^2\, dr\,d{\mathcal {H}}^{d-1}+C\nonumber \\&\leqslant C\left( \int _\Omega |\nabla {\textbf{u}}^{in}|^2\, dx+1\right) . \end{aligned}$$
(A.12)

Combining this with (A.10) and (A.9) we derive \(E_\varepsilon [{\textbf{u}}_\varepsilon ^{in} | I_0]\leqslant C\varepsilon \). Recalling (1.21), we have also obtained (1.14b). To verify (1.14c), we shall compute (1.12) at \(t=0\). By (A.7), we see that

$$\begin{aligned} B [{\textbf{u}}_\varepsilon ^{in} | I_0]= 2\int _\Omega \Big ( \tfrac{\chi +1}{2}-\psi _\varepsilon \Big )\eta \circ d_I \, dx. \end{aligned}$$

We shall only give the estimate in \(B_{\delta _0}(I_0)\cap \Omega _0^+\) because the one in \(B_{\delta _0}(I_0)\cap \Omega _0^-\) follows in the same way, and the one in \(\Omega \backslash B_{\delta _0}(I_0)\) is due to (A.6) and the exponential convergence of \(\theta (z)\) at \(\pm \infty \).

$$\begin{aligned}&\int _{B_{\delta _0}(I_0)\cap \Omega _0^+} |\psi _\varepsilon -1| d_{I}(x)\, dx\Big |_{t=0}\nonumber \\&\overset{(A.7)}{=} \int _{B_{\delta _0}(I_0)\cap \Omega _0^+}\left( \int _{s_\varepsilon (x)}^1 \sqrt{2f(s)}\, ds\right) d_{I}(x)\, dx\Big |_{t=0}\nonumber \\&\overset{ (A.6)}{=}\varepsilon \int _{B_{\delta _0}(I_0)\cap \Omega _0^+}\left( \int _{\theta (\frac{d_{I}(x)}{\varepsilon })}^1 \sqrt{2f(s)}\, ds\right) \frac{d_{I}(x)}{\varepsilon }\, dx\Big |_{t=0}+O(e^{-C/\varepsilon })\leqslant C \varepsilon ^2, \end{aligned}$$
(A.13)

where the last step is due to the exponential decay of \(Q(z):=z\int _{\theta (z)}^1\sqrt{2f(s)}\, ds\) as \(z\uparrow \infty \). \(\square \)

Appendix B: Proof of Proposition 2.1

Lemma B.1

The following identity holds:

$$\begin{aligned}&\int \nabla {\textbf{H}}: (\varvec{\xi }\otimes {\textbf{n}}_\varepsilon )\left| \nabla \psi _\varepsilon \right| \, d x -\int (\nabla \cdot {\textbf{H}}) \, \varvec{\xi }\cdot \nabla \psi _\varepsilon \, d x\nonumber \\ =&\,\int \nabla {\textbf{H}}: (\varvec{\xi }-{\textbf{n}}_\varepsilon ) \otimes {\textbf{n}}_\varepsilon \left| \nabla \psi _\varepsilon \right| \, d x+\int {\textbf{H}}_\varepsilon \cdot {\textbf{H}}|\nabla {\textbf{u}}_\varepsilon |\, d x \nonumber \\&+\int \nabla \cdot {\textbf{H}}\left( \frac{\varepsilon }{2} |\nabla {\textbf{u}}_\varepsilon |^2 +\frac{1}{\varepsilon }F ({\textbf{u}}_\varepsilon ) -|\nabla \psi _\varepsilon | \right) \, d x +\int \nabla \cdot {\textbf{H}}( |\nabla \psi _\varepsilon |-\varvec{\xi }\cdot \nabla \psi _\varepsilon )\, d x\nonumber \\&-\int (\nabla {\textbf{H}})_{ij} \,\varepsilon \left( \partial _i {\textbf{u}}_\varepsilon \cdot \partial _j {\textbf{u}}_\varepsilon \right) \, d x +\int \nabla {\textbf{H}}: ({\textbf{n}}_\varepsilon \otimes {\textbf{n}}_\varepsilon )\left| \nabla \psi _\varepsilon \right| \, d x. \end{aligned}$$
(B.1)

Proof

We introduce the stress tensor \( (T_\varepsilon )_{ij}:= \left( \frac{\varepsilon }{2} |\nabla {\textbf{u}}_\varepsilon |^2 +\frac{1}{\varepsilon } F ({\textbf{u}}_\varepsilon ) \right) \delta _{ij} - \varepsilon \partial _i {\textbf{u}}_\varepsilon \cdot \partial _j {\textbf{u}}_\varepsilon .\) By (2.20b), we have the identity \(\nabla \cdot T_\varepsilon ={\textbf{H}}_\varepsilon |\nabla {\textbf{u}}_\varepsilon |.\) Testing this identity with \({\textbf{H}}\), integrating by parts and using (2.14c), we obtain

$$\begin{aligned} \begin{aligned}&\int {\textbf{H}}_\varepsilon \cdot {\textbf{H}}|\nabla {\textbf{u}}_\varepsilon |\,d x =- \int \nabla {\textbf{H}}:T_\varepsilon \,d x\\&=- \int \nabla \cdot {\textbf{H}}\left( \frac{\varepsilon }{2} |\nabla {\textbf{u}}_\varepsilon |^2 +\frac{1}{\varepsilon } F ({\textbf{u}}_\varepsilon ) \right) \, dx+ \int (\nabla {\textbf{H}})_{ij} \, \varepsilon \left( \partial _i {\textbf{u}}_\varepsilon \cdot \partial _j {\textbf{u}}_\varepsilon \right) d x. \end{aligned} \end{aligned}$$

So adding zero leads to

$$\begin{aligned} \begin{aligned}&\int \nabla {\textbf{H}}: {\textbf{n}}_\varepsilon \otimes {\textbf{n}}_\varepsilon \left| \nabla \psi _\varepsilon \right| d x\\&=\int {\textbf{H}}_\varepsilon \cdot {\textbf{H}}|\nabla {\textbf{u}}_\varepsilon |\, dx+\int \nabla \cdot {\textbf{H}}\left( \frac{\varepsilon }{2} |\nabla {\textbf{u}}_\varepsilon |^2 +\frac{1}{\varepsilon } F ({\textbf{u}}_\varepsilon ) -|\nabla \psi _\varepsilon | \right) \,d x+\int \nabla \cdot {\textbf{H}}|\nabla \psi _\varepsilon |\,d x\\&-\int (\nabla {\textbf{H}})_{ij}\,\varepsilon \left( \partial _i {\textbf{u}}_\varepsilon \cdot \partial _j {\textbf{u}}_\varepsilon \right) d x+\int (\nabla {\textbf{H}}): ({\textbf{n}}_\varepsilon \otimes {\textbf{n}}_\varepsilon )\left| \nabla \psi _\varepsilon \right| d x, \end{aligned} \end{aligned}$$

which yields (B.1). \(\square \)

Lemma B.2

Under the assumptions of Theorem 1.1, the following identity holds:

$$\begin{aligned} \frac{d}{d t} E&\left[ {\textbf{u}}_\varepsilon | I\right] +\frac{1}{2\varepsilon }\int \left( \varepsilon ^2 \left| \partial _t {\textbf{u}}_\varepsilon \right| ^2-|{\textbf{H}}_\varepsilon |^2\right) \,dx\nonumber \\&+\frac{1}{2\varepsilon }\int \Big | \varepsilon \partial _t {\textbf{u}}_\varepsilon -(\nabla \cdot \varvec{\xi }) D \textrm{d}^F ({\textbf{u}}_\varepsilon ) \Big |^2d x +\frac{1}{2\varepsilon }\int \Big | {\textbf{H}}_\varepsilon -\varepsilon |\nabla {\textbf{u}}_\varepsilon | {\textbf{H}}\Big |^2\,d x\nonumber \\ =&\,\frac{1}{2\varepsilon } \int \Big | (\nabla \cdot \varvec{\xi }) | D \textrm{d}^F ({\textbf{u}}_\varepsilon )|{\textbf{n}}_\varepsilon +\varepsilon |\Pi _{{\textbf{u}}_\varepsilon } \nabla {\textbf{u}}_\varepsilon | {\textbf{H}}\Big |^2\,d x \end{aligned}$$
(B.2a)
$$\begin{aligned}&+\frac{\varepsilon }{2} \int |{\textbf{H}}|^2\left( |\nabla {\textbf{u}}_\varepsilon |^2-|\Pi _{{\textbf{u}}_\varepsilon }\nabla {\textbf{u}}_\varepsilon |^2\right) \,d x -\int \nabla {\textbf{H}}\cdot (\varvec{\xi }-{\textbf{n}}_\varepsilon )^{\otimes 2}\left| \nabla \psi _\varepsilon \right| \,d x \end{aligned}$$
(B.2b)
$$\begin{aligned}&+\int \left( \nabla \cdot {\textbf{H}}\right) \left( \frac{\varepsilon }{2} |\nabla {\textbf{u}}_\varepsilon |^2 +\frac{1}{\varepsilon }F ({\textbf{u}}_\varepsilon ) -|\nabla \psi _\varepsilon | \right) \,d x \end{aligned}$$
(B.2c)
$$\begin{aligned}&+\int \left( \nabla \cdot {\textbf{H}}\right) \left( 1-\varvec{\xi }\cdot {\textbf{n}}_\varepsilon \right) |\nabla \psi _\varepsilon |\, d x+ \int (J_\varepsilon ^1+J_\varepsilon ^2)\, d x, \end{aligned}$$
(B.2d)

where

$$\begin{aligned} J_\varepsilon ^1 :=&\, \nabla {\textbf{H}}: {\textbf{n}}_\varepsilon \otimes {\textbf{n}}_\varepsilon \left( |\nabla \psi _\varepsilon |-\varepsilon |\nabla {\textbf{u}}_\varepsilon |^2\right) \nonumber \\&+\varepsilon \nabla {\textbf{H}}:({\textbf{n}}_\varepsilon \otimes {\textbf{n}}_\varepsilon )\left( |\nabla {\textbf{u}}_\varepsilon |^2-|\Pi _{{\textbf{u}}_\varepsilon } \nabla {\textbf{u}}_\varepsilon |^2\right) \nonumber \\&-\sum _{ij}\varepsilon (\nabla {\textbf{H}})_{ij} \Big ((\partial _i {\textbf{u}}_\varepsilon -\Pi _{{\textbf{u}}_\varepsilon } \partial _i {\textbf{u}}_\varepsilon )\cdot (\partial _j {\textbf{u}}_\varepsilon -\Pi _{{\textbf{u}}_\varepsilon } \partial _j {\textbf{u}}_\varepsilon )\Big ), \end{aligned}$$
(B.3)
$$\begin{aligned} J_\varepsilon ^2:=&- \left( \partial _t \varvec{\xi }+\left( {\textbf{H}}\cdot \nabla \right) \varvec{\xi }+\left( \nabla {\textbf{H}}\right) ^{{\textsf{T}}} \varvec{\xi }\right) \cdot \nabla \psi _\varepsilon . \end{aligned}$$
(B.4)

Proof

We shall employ the Einstein summation convention by summing over repeated indices. Using the energy dissipation law in (2.6) and adding zero, we find

$$\begin{aligned}&\frac{d}{d t} E_\varepsilon [ {\textbf{u}}_\varepsilon | I] +\varepsilon \int |\partial _t {\textbf{u}}_\varepsilon |^2\,d x-\int (\nabla \cdot \varvec{\xi }) {D \textrm{d}^F } ({\textbf{u}}_\varepsilon )\cdot \partial _t {\textbf{u}}_\varepsilon \,d x\nonumber \\ =&\int \left( {\textbf{H}}\cdot \nabla \right) \varvec{\xi }\cdot \nabla \psi _\varepsilon \,d x +\int \left( \nabla {\textbf{H}}\right) ^{{\textsf{T}}} \varvec{\xi }\cdot \nabla \psi _\varepsilon \,d x+ \int J_\varepsilon ^2\, d x. \end{aligned}$$
(B.5)

By the symmetry of \(\nabla ^2\psi _\varepsilon \) and the boundary conditions in (2.14c), we have

$$\begin{aligned} \int \nabla \cdot (\varvec{\xi }\otimes {\textbf{H}}) \cdot \nabla \psi _\varepsilon \, d x = \int \nabla \cdot ({\textbf{H}}\otimes \varvec{\xi }) \cdot \nabla \psi _\varepsilon \, d x. \end{aligned}$$

Hence, the first integral on the right-hand side of (B.5) can be rewritten as

$$\begin{aligned}&\int \left( {\textbf{H}}\cdot \nabla \right) \,\varvec{\xi }\cdot \nabla \psi _\varepsilon \, d x\nonumber \\&=\int \nabla \cdot (\varvec{\xi }\otimes {\textbf{H}}) \cdot \nabla \psi _\varepsilon \, d x -\int (\nabla \cdot {\textbf{H}}) \,\varvec{\xi }\cdot \nabla \psi _\varepsilon \, d x\nonumber \\&= \int (\nabla \cdot \varvec{\xi }) \,{\textbf{H}}\cdot \nabla \psi _\varepsilon \, d x +\int (\varvec{\xi }\cdot \nabla ) \,{\textbf{H}}\cdot \nabla \psi _\varepsilon \, d x -\int (\nabla \cdot {\textbf{H}}) \,\varvec{\xi }\cdot \nabla \psi _\varepsilon \,d x. \end{aligned}$$

Therefore,

$$\begin{aligned} \begin{aligned}&\frac{d}{d t} E_\varepsilon [ {\textbf{u}}_\varepsilon | I] +\varepsilon \int |\partial _t {\textbf{u}}_\varepsilon |^2\,d x-\int (\nabla \cdot \varvec{\xi }) {D \textrm{d}^F } ({\textbf{u}}_\varepsilon )\cdot \partial _t {\textbf{u}}_\varepsilon \,d x \\ =&\int (\nabla \cdot \varvec{\xi })\, {\textbf{H}}\cdot \nabla \psi _\varepsilon d x+\int (\varvec{\xi }\cdot \nabla ) \,{\textbf{H}}\cdot \nabla \psi _\varepsilon \,d x -\int (\nabla \cdot {\textbf{H}})\, \varvec{\xi }\cdot \nabla \psi _\varepsilon \,d x\\&+\int \nabla {\textbf{H}}: \left( \varvec{\xi }\otimes {\textbf{n}}_\varepsilon \right) \left| \nabla \psi _\varepsilon \right| d x+ \int J_\varepsilon ^2\, d x. \end{aligned} \end{aligned}$$

Now using (B.1) to replace the third and the fourth integrals on the right-hand side of the above equation, we find

$$\begin{aligned}&\frac{d}{d t} E_\varepsilon [ {\textbf{u}}_\varepsilon | I] +\varepsilon \int |\partial _t {\textbf{u}}_\varepsilon |^2\,d x-\int (\nabla \cdot \varvec{\xi }) {D \textrm{d}^F } ({\textbf{u}}_\varepsilon )\cdot \partial _t {\textbf{u}}_\varepsilon \,d x \nonumber \\ =&\int (\nabla \cdot \varvec{\xi }) \,{\textbf{H}}\cdot \nabla \psi _\varepsilon \,d x +\int (\varvec{\xi }\cdot \nabla )\, {\textbf{H}}\cdot \nabla \psi _\varepsilon \,d x +\int \nabla {\textbf{H}}: (\varvec{\xi }-{\textbf{n}}_\varepsilon ) \otimes {\textbf{n}}_\varepsilon \left| \nabla \psi _\varepsilon \right| \,d x\nonumber \\&+\int {\textbf{H}}_\varepsilon \cdot {\textbf{H}}|\nabla {\textbf{u}}_\varepsilon |\,d x + \int \nabla \cdot {\textbf{H}}\left( \frac{\varepsilon }{2} |\nabla {\textbf{u}}_\varepsilon |^2 +\frac{1}{\varepsilon }F ({\textbf{u}}_\varepsilon ) -|\nabla \psi _\varepsilon | \right) \,d x\nonumber \\&+\int \nabla \cdot {\textbf{H}}\left( |\nabla \psi _\varepsilon |-\varvec{\xi }\cdot \nabla \psi _\varepsilon \right) \,d x-\int (\nabla {\textbf{H}})_{ij} \,\varepsilon \left( \partial _i {\textbf{u}}_\varepsilon \cdot \partial _j {\textbf{u}}_\varepsilon \right) \, d x\nonumber \\&+\int \nabla {\textbf{H}}: {\textbf{n}}_\varepsilon \otimes {\textbf{n}}_\varepsilon \left| \nabla \psi _\varepsilon \right| \,d x +\int J_\varepsilon ^2\, dx. \end{aligned}$$
(B.6)

We shall show that \(J_\varepsilon ^1\) arises from the second and the third to last integrals by proving the following identity:

$$\begin{aligned} \Pi _{{\textbf{u}}_\varepsilon } \partial _i {\textbf{u}}_\varepsilon \cdot \Pi _{{\textbf{u}}_\varepsilon } \partial _j {\textbf{u}}_\varepsilon =n_\varepsilon ^i n_\varepsilon ^j |\Pi _{{\textbf{u}}_\varepsilon } \nabla {\textbf{u}}_\varepsilon |^2 ~\text { a.e. in }\Omega , \end{aligned}$$
(B.7)

where \((n_\varepsilon ^\ell )_{1\leqslant \ell \leqslant 3}={\textbf{n}}_\varepsilon \). Such an identity holds obviously on the set \(\{ x\mid {\textbf{u}}_\varepsilon =0\}\) by (2.22). It also holds on \(\{ x \mid g(|{\textbf{u}}_\varepsilon |)>0\}\) due to the following identity which follows from (2.22) and (2.23a):

$$\begin{aligned} \Pi _{{\textbf{u}}_\varepsilon } \partial _i {\textbf{u}}_\varepsilon \cdot \Pi _{{\textbf{u}}_\varepsilon } \partial _j {\textbf{u}}_\varepsilon | {D \textrm{d}^F }({\textbf{u}}_\varepsilon )|^2=\partial _i \psi _\varepsilon ~ \partial _j \psi _\varepsilon =n_\varepsilon ^i ~ n_\varepsilon ^j |\Pi _{{\textbf{u}}_\varepsilon } \nabla {\textbf{u}}_\varepsilon |^2| {D \textrm{d}^F }({\textbf{u}}_\varepsilon )|^2. \end{aligned}$$

On the open set \(\{ x\mid |{\textbf{u}}_\varepsilon |>0\}\) which includes \(\{ x\mid |{\textbf{u}}_\varepsilon |=1\}\), we deduce from (2.22) and (2.19a) that \(\Pi _{{\textbf{u}}_\varepsilon } \partial _j {\textbf{u}}_\varepsilon =(\partial _j |{\textbf{u}}_\varepsilon |) ~{\textbf{u}}_\varepsilon \). By [18, Theorem 4.4] we have \(\partial _j |{\textbf{u}}_\varepsilon |=0\) a.e. on \(\{ x\mid |{\textbf{u}}_\varepsilon |=1\}\). We thus complete the proof of (B.7).

Now by (B.7) and adding zero, we find

$$\begin{aligned} \begin{aligned}&\nabla {\textbf{H}}: {\textbf{n}}_\varepsilon \otimes {\textbf{n}}_\varepsilon \left| \nabla \psi _\varepsilon \right| - (\nabla {\textbf{H}})_{ij} \,\varepsilon \left( \partial _i {\textbf{u}}_\varepsilon \cdot \partial _j {\textbf{u}}_\varepsilon \right) \\ \overset{(2.22)}{=}&\nabla {\textbf{H}}: {\textbf{n}}_\varepsilon \otimes {\textbf{n}}_\varepsilon \left| \nabla \psi _\varepsilon \right| - \varepsilon (\nabla {\textbf{H}})_{ij}(\Pi _{{\textbf{u}}_\varepsilon } \partial _i {\textbf{u}}_\varepsilon \cdot \Pi _{{\textbf{u}}_\varepsilon } \partial _j {\textbf{u}}_\varepsilon ) \\&- (\nabla {\textbf{H}})_{ij} \,\varepsilon \Big ((\partial _i {\textbf{u}}_\varepsilon -\Pi _{{\textbf{u}}_\varepsilon } \partial _i {\textbf{u}}_\varepsilon )\cdot (\partial _j {\textbf{u}}_\varepsilon -\Pi _{{\textbf{u}}_\varepsilon } \partial _j {\textbf{u}}_\varepsilon )\Big ) \overset{(B.3)}{=} J_\varepsilon ^1~\text { a.e. in }\Omega . \end{aligned} \end{aligned}$$

Using the identities \(\nabla \psi _\varepsilon ={\textbf{n}}_\varepsilon |\nabla \psi _\varepsilon |\) and \( \nabla {\textbf{H}}:(\varvec{\xi }\otimes \varvec{\xi })=0\) (due to (2.14b)), we merge the second and the third integrals on the right-hand side of (B.6):

$$\begin{aligned} \frac{d}{d t} E_\varepsilon [ {\textbf{u}}_\varepsilon | I]&=-\varepsilon \int |\partial _t {\textbf{u}}_\varepsilon |^2\, dx+\int (\nabla \cdot \varvec{\xi }) {D \textrm{d}^F } ({\textbf{u}}_\varepsilon )\cdot \partial _t {\textbf{u}}_\varepsilon \, dx\nonumber \\&\quad + \int (\nabla \cdot \varvec{\xi }) \,{\textbf{H}}\cdot \nabla \psi _\varepsilon \, dx+\int {\textbf{H}}_\varepsilon \cdot {\textbf{H}}|\nabla {\textbf{u}}_\varepsilon | \, dx -\int \nabla {\textbf{H}}: (\varvec{\xi }-{\textbf{n}}_\varepsilon )^{\otimes 2}\left| \nabla \psi _\varepsilon \right| \, dx\nonumber \\&\quad +\int \left( \nabla \cdot {\textbf{H}}\right) \Big ( \frac{\varepsilon }{2} |\nabla {\textbf{u}}_\varepsilon |^2 +\frac{1}{\varepsilon }F ({\textbf{u}}_\varepsilon ) -|\nabla \psi _\varepsilon | \Big )\, dx\nonumber \\&\quad +\int (\nabla \cdot {\textbf{H}}) \left( 1-\varvec{\xi }\cdot {\textbf{n}}_\varepsilon \right) |\nabla \psi _\varepsilon |\, dx+ \int (J_\varepsilon ^1+J_\varepsilon ^2) \, dx. \end{aligned}$$
(B.8)

Now we complete squares for the first four terms on the right-hand side of (B.8). Reordering terms, we have

$$\begin{aligned} -&\varepsilon |\partial _t {\textbf{u}}_\varepsilon |^2+ (\nabla \cdot \varvec{\xi }) D \textrm{d}^F ({\textbf{u}}_\varepsilon )\cdot \partial _t {\textbf{u}}_\varepsilon + (\nabla \cdot \varvec{\xi }) {\textbf{H}}\cdot \nabla \psi _\varepsilon + {\textbf{H}}_\varepsilon \cdot {\textbf{H}}|\nabla {\textbf{u}}_\varepsilon |\\&= -\,\frac{1}{2\varepsilon } \Big ( |\varepsilon \partial _t {\textbf{u}}_\varepsilon |^2 -2(\nabla \cdot \varvec{\xi }) D \textrm{d}^F ({\textbf{u}}_\varepsilon )\cdot \varepsilon \partial _t {\textbf{u}}_\varepsilon +(\nabla \cdot \varvec{\xi })^2 | D \textrm{d}^F ({\textbf{u}}_\varepsilon )|^2 \Big )\\&\quad - \frac{1}{2\varepsilon } |\varepsilon \partial _t {\textbf{u}}_\varepsilon |^2 + \frac{1}{2\varepsilon }(\nabla \cdot \varvec{\xi })^2 | D \textrm{d}^F ({\textbf{u}}_\varepsilon )|^2 + (\nabla \cdot \varvec{\xi }) {\textbf{H}}\cdot \nabla \psi _\varepsilon \\&\quad - \frac{1}{2\varepsilon } \Big ( |{\textbf{H}}_\varepsilon |^2 - 2 \varepsilon |\nabla {\textbf{u}}_\varepsilon | {\textbf{H}}_\varepsilon \cdot {\textbf{H}}+ \varepsilon ^2 |\nabla {\textbf{u}}_\varepsilon |^2 |{\textbf{H}}|^2\Big ) + \frac{1}{2\varepsilon } \Big ( |{\textbf{H}}_\varepsilon |^2 + \varepsilon ^2 |\nabla {\textbf{u}}_\varepsilon |^2 |{\textbf{H}}|^2\Big )\\&= -\,\frac{1}{2\varepsilon } \Big |\varepsilon \partial _t {\textbf{u}}_\varepsilon - (\nabla \cdot \varvec{\xi }) D \textrm{d}^F ({\textbf{u}}_\varepsilon ) \Big |^2 - \frac{1}{2\varepsilon } \Big |{\textbf{H}}_\varepsilon - \varepsilon |\nabla {\textbf{u}}_\varepsilon | {\textbf{H}}\Big |^2 - \frac{1}{2\varepsilon } |\varepsilon \partial _t {\textbf{u}}_\varepsilon |^2 +\frac{1}{2\varepsilon } |{\textbf{H}}_\varepsilon |^2\\&\quad + \frac{1}{2\varepsilon } \Big ( (\nabla \cdot \varvec{\xi })^2 | D \textrm{d}^F ({\textbf{u}}_\varepsilon )|^2 + 2\varepsilon (\nabla \cdot \varvec{\xi }) \nabla \psi _\varepsilon \cdot {\textbf{H}}+ |\varepsilon \Pi _{{\textbf{u}}_\varepsilon }\nabla {\textbf{u}}_\varepsilon |^2 |{\textbf{H}}|^2 \Big )\\&\quad +\frac{\varepsilon }{2} \left( |\nabla {\textbf{u}}_\varepsilon |^2- | \Pi _{{\textbf{u}}_\varepsilon }\nabla {\textbf{u}}_\varepsilon |^2\right) |{\textbf{H}}|^2. \end{aligned}$$

Substituting this identity into (B.8), we arrive at (B.2). \(\square \)

Proof of Proposition 2.1

The proof here is the same as the case \(\mu =0\), done in [40, Lemma 4.4]. This is because the form of the energy dissipation law (2.6) remains unchanged in the presence of the divergence term in (1.2a).

We first estimate the right-hand side of (B.2) by \(E_\varepsilon [{\textbf{u}}_\varepsilon | I]\) up to a constant that only depends on \(I_t\). Concerning (B.2a), it follows from the triangle inequality that

$$\begin{aligned} \begin{aligned} \int&\left| \frac{1}{\sqrt{\varepsilon }} (\nabla \cdot \varvec{\xi }) | D \textrm{d}^F ({\textbf{u}}_\varepsilon )|{\textbf{n}}_\varepsilon +\sqrt{\varepsilon } |\Pi _{{\textbf{u}}_\varepsilon } \nabla {\textbf{u}}_\varepsilon | {\textbf{H}}\right| ^2d x \\ \leqslant&\int \left| (\nabla \cdot \varvec{\xi }) \left( \frac{1}{\sqrt{\varepsilon }} | D \textrm{d}^F ({\textbf{u}}_\varepsilon )|-\sqrt{\varepsilon } |\Pi _{{\textbf{u}}_\varepsilon } \nabla {\textbf{u}}_\varepsilon | \right) {\textbf{n}}_\varepsilon \right| ^2\,d x\\ {}&+\int \Big |(\nabla \cdot \varvec{\xi })\sqrt{\varepsilon } |\Pi _{{\textbf{u}}_\varepsilon } \nabla {\textbf{u}}_\varepsilon |({\textbf{n}}_\varepsilon -\varvec{\xi })\Big |^2\, d x \\&+ \int \left| \big ((\nabla \cdot \varvec{\xi }) \varvec{\xi }+{\textbf{H}}\big ) \sqrt{\varepsilon } |\Pi _{{\textbf{u}}_\varepsilon } \nabla {\textbf{u}}_\varepsilon | \right| ^2\,d x. \end{aligned} \end{aligned}$$

The first integral on the right-hand side of the above inequality is controlled using (2.26c). Due to the elementary inequality \(|\varvec{\xi }- {\textbf{n}}_\varepsilon |^2 \leqslant 2 (1-{\textbf{n}}_\varepsilon \cdot \varvec{\xi })\), the second integral is controlled by (2.26d). The third integral can be treated using the relation \({\textbf{H}}=({\textbf{H}}\cdot \varvec{\xi }) \varvec{\xi }+O(d_I(x,t))\) and (2.15a). So it can be controlled by (2.26e).

The integrals in (B.2b) can be controlled using (2.26c) and (2.26d). The one in (B.2c) is controlled by (2.26a). The first term in (B.2d) can be controlled using (2.26d). It remains to estimate (B.3) and (B.4). The integrals of the last two terms defining \(J_\varepsilon ^1\) can be controlled by (2.26b). Therefore,

$$\begin{aligned} \int J_\varepsilon ^1\, dx \overset{(2.26b)}{\leqslant }&\int \nabla {\textbf{H}}: \left( {\textbf{n}}_\varepsilon \otimes ({\textbf{n}}_\varepsilon -\varvec{\xi })\right) \left( |\nabla \psi _\varepsilon |-\varepsilon |\nabla {\textbf{u}}_\varepsilon |^2\right) \, dx\nonumber \\&+\int (\varvec{\xi }\cdot \nabla ) {\textbf{H}}\cdot {\textbf{n}}_\varepsilon \left( |\nabla \psi _\varepsilon |-\varepsilon |\nabla {\textbf{u}}_\varepsilon |^2\right) \, dx+ C E_\varepsilon [{\textbf{u}}_\varepsilon | I]\nonumber \\ \overset{(2.14b)}{\leqslant }&C\Big ( \int |{\textbf{n}}_\varepsilon -\varvec{\xi }| \Big (\varepsilon |\nabla {\textbf{u}}_\varepsilon |^2-\varepsilon |\Pi _{{\textbf{u}}_\varepsilon }\nabla {\textbf{u}}_\varepsilon |^2\Big )\, dx\\&+\int |{\textbf{n}}_\varepsilon -\varvec{\xi }| \left| \varepsilon |\Pi _{{\textbf{u}}_\varepsilon }\nabla {\textbf{u}}_\varepsilon |^2-|\nabla \psi _\varepsilon |\right| \, dx\nonumber \\&+ \int \min \left( d^2_I ,1\right) \left( |\nabla \psi _\varepsilon |+\varepsilon |\nabla {\textbf{u}}_\varepsilon |^2\right) \, dx+ E_\varepsilon [{\textbf{u}}_\varepsilon | I]\Big ). \end{aligned}$$

The first and the third integrals in the last display can be estimated using (2.26b) and (2.26e) respectively. Then we employ (2.23a) to find

$$\begin{aligned} \int J_\varepsilon ^1\, dx \leqslant&\,C \Big ( \int |{\textbf{n}}_\varepsilon -\varvec{\xi }| \left| \varepsilon |\Pi _{{\textbf{u}}_\varepsilon }\nabla {\textbf{u}}_\varepsilon |^2-|\nabla \psi _\varepsilon |\right| \, dx+ E_\varepsilon [{\textbf{u}}_\varepsilon | I]\Big )\nonumber \\ \overset{(2.23a)}{=}&\, C\Big ( \int |{\textbf{n}}_\varepsilon -\varvec{\xi }| \sqrt{\varepsilon } |\Pi _{{\textbf{u}}_\varepsilon }\nabla {\textbf{u}}_\varepsilon | \left| \sqrt{\varepsilon } |\Pi _{{\textbf{u}}_\varepsilon }\nabla {\textbf{u}}_\varepsilon |-\frac{1}{\sqrt{\varepsilon }}| D \textrm{d}^F ({\textbf{u}}_\varepsilon )|\right| \, dx+ E_\varepsilon [{\textbf{u}}_\varepsilon | I]\Big ). \end{aligned}$$

Finally applying the Cauchy-Schwarz inequality and then (2.26c) and (2.26d), we obtain \(\int J_\varepsilon ^1 \,dx\leqslant C E_\varepsilon [{\textbf{u}}_\varepsilon | I].\) As for \(J_\varepsilon ^2\) (B.4), we employ (2.15c) and (2.26e) to obtain \(\int J_\varepsilon ^2\,dx \leqslant C E_\varepsilon [{\textbf{u}}_\varepsilon | I].\) All in all, we have proved that the right-hand side of (B.2) is bounded by \(E_\varepsilon [{\textbf{u}}_\varepsilon | I]\) up to a multiplicative constant which only depends on \(I_t\). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y. Phase transition of an anisotropic Ginzburg–Landau equation. Calc. Var. 63, 171 (2024). https://doi.org/10.1007/s00526-024-02779-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1007/s00526-024-02779-5

Mathematics Subject Classification