Skip to main content
Log in

Phase separating solutions for two component systems in general planar domains

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper we consider a two component system of coupled non linear Schrödinger equations modeling the phase separation in the binary mixture of Bose–Einstein condensates and other related problems. Assuming the existence of solutions in the limit of large interspecies scattering length \(\beta \) the system reduces to a couple of scalar problems on subdomains of pure phases (Noris et al. in Commun Pure Appl Math 63:267–302, 2010). Here we show that given a solution to the limiting problem under some additional non degeneracy assumptions there exists a family of solutions parametrized by \(\beta \gg 1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aftalion, A., Sourdis, C.: Interface layer of a two-component Bose–Einstein system. Commun. Contemp. Math. 19, 1650052 (2016)

    Article  MATH  Google Scholar 

  2. Berestycki, H., Lin, T.-C., Wei, J., Zhao, C.: On phase-separation models: asymptotics and qualitative properties. Arch. Ration. Mech. Anal. 208(1), 163–200 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Caffarelli, L.A., Lin, F.: Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries. J. Am. Math. Soc. 21, 847–862 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Casteras, J.-B., Sourdis, C.: Construction of a solution for the two-component radial Gross–Pitaevskii system with a large coupling parameter. J. Funct. Anal. 279, 108674 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. Conti, M., Terracini, S., Verzini, G.: Nehari’s problem and competing species system. Ann. Inst. Henri Poincaré Anal. Non Linéaire 19, 871–888 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. De Figueiredo, D.G., Mitideri, E.: Maximum principles for linear elliptic systems. In: Costa, D. (ed.) Djairo G. de Figueiredo-Selected Papers, p. 2014. Springer, Cham (1990)

    Google Scholar 

  7. Esry, B.D., Greene, C.H., Burke, J.P., Jr., Bohn, J.L.: Hartree–Fock theory for double condensates. Phys. Rev. Lett. 78, 3594–3597 (1997)

    Article  Google Scholar 

  8. Esry, B.D., Greene, C.H.: Spontaneous spatial symmetry breaking in two-component Bose–Einstein condensates. Phys. Rev. A 59, 1457–1460 (1999)

    Article  Google Scholar 

  9. Hall, D.S., Matthews, M.R., Ensher, J.R., Wieman, C.E., Cornell, E.A.: Dynamics of component separation in a binary mixture of Bose–Einstein condensates. Phys. Rev. Lett. 81, 1539–1542 (1998)

    Article  Google Scholar 

  10. Jendrej, J.: Private communication

  11. Kowalczyk, M., Pistoia, A., Vaira, G.: Maximal solution of the Liouville equation in doubly connected domains. J. Funct. Anal. 277(9), 2997–3050 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Levitan, B.M., Sargsjan, I.S.: Sturm–Liouville and Dirac Operators. Mathematics and Its Applications (Soviet Series). Kluver Academic Publishers, Dordrecht (1991)

    Google Scholar 

  13. Myatt, C.J., Burt, E.A., Ghrist, R.W., Cornell, E.A., Wieman, C.E.: Production of two overlapping Bose–Einstein condensates by sympathetic cooling. Phys. Rev. Lett. 78, 586–589 (1997)

    Article  Google Scholar 

  14. Noris, B., Tavares, H., Terracini, S., Verzini, G.: Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition. Commun. Pure Appl. Math. 63, 267–302 (2010)

    Article  MATH  Google Scholar 

  15. Parkins, A.S., Walls, D.F.: The physics of trapped dilute-gas Bose–Einstein condensates. Phys. Rep. 303, 1–80 (1998)

    Article  Google Scholar 

  16. Quinn, F.: Transversal approximation on Banach manifolds, Global Analysis (Proceedings of Symposia in Pure Mathematics, vol. XV, Berkeley, Calif., 1968), pp. 213–222. Amer. Math. Soc., Providence (1970)

    Google Scholar 

  17. Saut, J.-C., Temam, R.: Generic properties of nonlinear boundary value problems. Commun. Partial Differ. Equ. 4, 293–319 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  18. Soave, N., Zilio, A.: On phase separation in systems of coupled elliptic equations: asymptotic analysis and geometric aspects. Ann. Inst. Henri Poincaré Anal. Non Linéaire 34, 625–654 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tavares, H., Terracini, S.: Sign-changing solutions of competition–diffusion elliptic systems and optimal partition problems. Ann. Inst. Henri Poincaré Anal. Non Linéaire 29, 279–300 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tavares, H., Terracini, S., Verzini, G., Weth, T.: Existence and nonexistence of entire solutions for non-cooperative cubic elliptic systems. Commun. Partial Differ. Equ. 36, 1988–2010 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Terracini, S., Verzini, G.: Multipulse phase in k-mixtures of Bose–Einstein condensates. Arch. Ration. Mech. Anal. 194, 717–741 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Timmermans, E.: Phase separation of Bose–Einstein condensates. Phys. Rev. Lett. 81, 5718–5721 (1998)

    Article  Google Scholar 

  23. Uhlenbeck, K.: Generic properties of eigenfunctions. Am. J. Math. 98, 1059–1078 (1976)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the referee for very careful and insightful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michał Kowalczyk.

Additional information

Communicated by Andrea Mondino.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

M. Kowalczyk was partially funded by Chilean research grants FONDECYT 1210405 and ANID projects ACE210010 and FB210005. He also acknowledges the hospitality of the Sapienza University in Rome where part of this work was done during his visit in March 2019. A. Pistoia and G. Vaira were partially supported by project Vain-Hopes within the program VALERE: VAnviteLli pEr la RicErca.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kowalczyk, M., Pistoia, A. & Vaira, G. Phase separating solutions for two component systems in general planar domains. Calc. Var. 62, 142 (2023). https://doi.org/10.1007/s00526-023-02483-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-023-02483-w

Mathematics Subject Classification

Navigation