Skip to main content
Log in

Stability and bifurcation in a reaction–diffusion–advection predator–prey model

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

A reaction–diffusion–advection predator–prey model with Holling type-II predator functional response is considered. We show the stability/instability of the positive steady state and the existence of a Hopf bifurcation when the diffusion and advection rates are large. Moreover, we show that advection rate can affect not only the occurrence of Hopf bifurcations but also the values of Hopf bifurcations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability statement

All data generated or analyzed during this study are included in this manuscript.

References

  1. Averill, I., Lam, K.-Y., Lou, Y.: The role of advection in a two-species competition model: a bifurcation approach. Mem. Am. Math. Soc. 245(1161), v+117 (2017)

    MATH  Google Scholar 

  2. Belgacem, F., Cosner, C.: The effects of dispersal along environmental gradients on the dynamics of populations in heterogeneous environments. Can. Appl. Math. Q. 3(4), 379–397 (1995)

    MATH  Google Scholar 

  3. Cantrell, R.S., Cosner, C., Lou, Y.: Movement toward better environments and the evolution of rapid diffusion. Math. Biosci. 204(2), 199–214 (2006)

    MATH  Google Scholar 

  4. Cantrell, R.S., Cosner, C., Lou, Y.: Advection-mediated coexistence of competing species. Proc. R. Soc. Edinb. Sect. A 137(3), 497–518 (2007)

    MATH  Google Scholar 

  5. Chen, X., Lou, Y.: Principal eigenvalue and eigenfunctions of an elliptic operator with large advection and its application to a competition model. Indiana Univ. Math. J. 57(2), 627–658 (2008)

    MATH  Google Scholar 

  6. Cosner, C., Lou, Y.: Does movement toward better environments always benefit a population? J. Math. Anal. Appl. 277(2), 489–503 (2003)

    MATH  Google Scholar 

  7. Dockery, J., Hutson, V., Mischaikow, K., Pernarowski, M.: The evolution of slow dispersal rates: a reaction diffusion model. J. Math. Biol. 37(1), 61–83 (1998)

    MATH  Google Scholar 

  8. Dong, Y., Li, S., Zhang, S.: Hopf bifurcation in a reaction–diffusion model with Degn–Harrison reaction scheme. Nonlinear Anal. Real World Appl. 33, 284–297 (2017)

    MATH  Google Scholar 

  9. Du, Y., Hsu, S.-B.: A diffusive predator–prey model in heterogeneous environment. J. Differ. Equ. 203(2), 331–364 (2004)

    MATH  Google Scholar 

  10. Du, Y., Shi, J.: Allee effect and bistability in a spatially heterogeneous predator–prey model. Trans. Am. Math. Soc. 359(9), 4557–4593 (2007)

    MATH  Google Scholar 

  11. Hassard, B.D., Kazarinoff, N.D., Wan, Y.H.: Theory and applications of Hopf bifurcation. In: London Mathematical Society Lecture Note Series, vol. 41. Cambridge University Press, Cambridge (1981)

  12. He, X., Ni, W.-M.: Global dynamics of the Lotka–Volterra competition–diffusion system: diffusion and spatial heterogeneity I. Commun. Pure Appl. Math. 69(5), 981–1014 (2016)

    MATH  Google Scholar 

  13. Huang, Q.-H., Jin, Y., Lewis, M.A.: \(R_0\) analysis of a Benthic-drift model for a stream population. SIAM J. Appl. Dyn. Syst. 15(1), 287–321 (2016)

    MATH  Google Scholar 

  14. Jin, Y., Lewis, M.A.: Seasonal influences on population spread and persistence in streams: critical domain size. SIAM J. Appl. Math. 71(4), 1241–1262 (2011)

    MATH  Google Scholar 

  15. Jin, Y., Peng, R., Shi, J.: Population dynamics in river networks. J. Nonlinear Sci. 29(6), 2501–2545 (2019)

    MATH  Google Scholar 

  16. Lam, K.-Y.: Concentration phenomena of a semilinear elliptic equation with large advection in an ecological model. J. Differ. Equ. 250(1), 161–181 (2011)

    MATH  Google Scholar 

  17. Lam, K.-Y., Lou, Y.: Evolutionarily stable and convergent stable strategies in reaction–diffusion models for conditional dispersal. Bull. Math. Biol. 76(2), 261–291 (2014)

    MATH  Google Scholar 

  18. Lam, K.Y., Lou, Y., Lutscher, F.: The emergence of range limits in advective environments. SIAM J. Appl. Math. 76(2), 641–662 (2016)

    MATH  Google Scholar 

  19. Lam, K.-Y., Ni, W.-M.: Uniqueness and complete dynamics in heterogeneous competition–diffusion systems. SIAM J. Appl. Math. 72(6), 1695–1712 (2012)

    MATH  Google Scholar 

  20. Li, S., Wu, J.: Asymptotic behavior and stability of positive solutions to a spatially heterogeneous predator–prey system. J. Differ. Equ. 265(8), 3754–3791 (2018)

    MATH  Google Scholar 

  21. Lou, Y.: On the effects of migration and spatial heterogeneity on single and multiple species. J. Differ. Equ. 223(2), 400–426 (2006)

    MATH  Google Scholar 

  22. Lou, Y.: Some reaction diffusion models in spatial ecology. Sci. Sin. Math. 45, 1619–1634 (2015). (in Chinese)

    MATH  Google Scholar 

  23. Lou, Y., Lutscher, F.: Evolution of dispersal in open advective environments. J. Math. Biol. 69(6–7), 1319–1342 (2014)

    MATH  Google Scholar 

  24. Lou, Y., Nie, H.: Global dynamics of a generalist predator-prey model in open advective environments. J. Math. Biol. 84(6), 1–40 (2022)

    MATH  Google Scholar 

  25. Lou, Y., Wang, B.: Local dynamics of a diffusive predator–prey model in spatially heterogeneous environment. J. Fixed Point Theory Appl. 19(1), 755–772 (2017)

    MATH  Google Scholar 

  26. Lou, Y., Zhao, X.-Q., Zhou, P.: Global dynamics of a Lotka–Volterra competition–diffusion–advection system in heterogeneous environments. J. Math. Pures Appl. 9(121), 47–82 (2019)

    MATH  Google Scholar 

  27. Lou, Y., Zhou, P.: Evolution of dispersal in advective homogeneous environment: the effect of boundary conditions. J. Differ. Equ. 259(1), 141–171 (2015)

    MATH  Google Scholar 

  28. Lutscher, F., Lewis, M.A., McCauley, E.: Effects of heterogeneity on spread and persistence in rivers. Bull. Math. Biol. 68(8), 2129–2160 (2006)

    MATH  Google Scholar 

  29. Lutscher, F., McCauley, E., Lewis, M.A.: Spatial patterns and coexistence mechanisms in systems with unidirectional flow. Theor. Popul. Biol. 71(3), 267–277 (2007)

    MATH  Google Scholar 

  30. Lutscher, F., Pachepsky, E., Lewis, M.A.: The effect of dispersal patterns on stream populations. SIAM Rev. 47(4), 749–772 (2005)

    MATH  Google Scholar 

  31. May, R.M.: Limit cycles in predator–prey communities. Science 177, 900–902 (1972)

    Google Scholar 

  32. Mckenzie, H.W., Jin, Y., Jacobsen, J., Lewis, M.A.: \(R_0\) analysis of a spatiotemporal model for a stream population. SIAM J. Appl. Dyn. Syst. 11(2), 567–596 (2012)

    MATH  Google Scholar 

  33. Nie, H., Wang, B., Wu, J.: Invasion analysis on a predator–prey system in open advective environments. J. Math. Biol. 81(6–7), 1429–1463 (2020)

    MATH  Google Scholar 

  34. Peng, R., Shi, J.: Non-existence of non-constant positive steady states of two Holling type-II predator–prey systems: strong interaction case. J. Differ. Equ. 247(3), 866–886 (2009)

    MATH  Google Scholar 

  35. Shi, H.-B., Ruan, S., Su, Y., Zhang, J.-F.: Spatiotemporal dynamics of a diffusive Leslie–Gower predator–prey model with ratio-dependent functional response. Int. J. Bifurc. Chaos Appl. Sci. Eng. 25(5), 1530014, 16 (2015)

    MATH  Google Scholar 

  36. Tang, D., Chen, Y.: Global dynamics of a Lotka–Volterra competition–diffusion system in advective heterogeneous environments. SIAM J. Appl. Dyn. Syst. 20(3), 1232–1252 (2021)

    MATH  Google Scholar 

  37. Tang, D., Chen, Y.: Predator-prey systems in open advective heterogeneous environments with Holling–Tanner interaction term. J. Differ. Equ. 334, 280–308 (2022)

    MATH  Google Scholar 

  38. Wang, B., Zhang, Z.: Bifurcation analysis of a diffusive predator–prey model in spatially heterogeneous environment. Electron. J. Qual. Theory Differ. Equ. 42, 1–17 (2017)

    Google Scholar 

  39. Wang, J., Nie, H.: Invasion dynamics of a predator–prey system in closed advective environments. J. Differ. Equ. 318, 298–322 (2022)

    MATH  Google Scholar 

  40. Wang, J., Shi, J., Wei, J.: Dynamics and pattern formation in a diffusive predator–prey system with strong Allee effect in prey. J. Differ. Equ. 251(4–5), 1276–1304 (2011)

    MATH  Google Scholar 

  41. Wang, M.: Stability and Hopf bifurcation for a prey–predator model with prey-stage structure and diffusion. Math. Biosci. 212(2), 149–160 (2008)

    MATH  Google Scholar 

  42. Xin, S., Li, L., Nie, H.: The effect of advection on a predator–prey model in open advective environments. Commun. Nonlinear Sci. Numer. Simul. 113, Paper No. 106567, 17 (2022)

    MATH  Google Scholar 

  43. Yi, F., Wei, J., Shi, J.: Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator–prey system. J. Differ. Equ. 246(5), 1944–1977 (2009)

    MATH  Google Scholar 

  44. Zhou, P.: On a Lotka–Volterra competition system: diffusion vs advection. Calc. Var. Partial Differ. Equ. 55(6), Art. 137, 29 (2016)

    MATH  Google Scholar 

  45. Zhou, P., Xiao, D.: Global dynamics of a classical Lotka–Volterra competition–diffusion–advection system. J. Funct. Anal. 275(2), 356–380 (2018)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanshan Chen.

Additional information

Communicated by A. Neves.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research is supported by Shandong Provincial Natural Science Foundation of China (No. ZR2020YQ01) and the National Natural Science Foundation of China (No. 12171117).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Chen, S. Stability and bifurcation in a reaction–diffusion–advection predator–prey model. Calc. Var. 62, 61 (2023). https://doi.org/10.1007/s00526-022-02405-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-022-02405-2

Mathematics Subject Classification

Navigation