Skip to main content
Log in

Extensions and traces of BV functions in rough domains and generalized Cheeger sets

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Via the method of interior approximation, we prove trace and extension results for BV functions defined on a bounded domain \(\Omega \subset {\mathbb {R}}^n\) such that \(\Omega \) satisfies

$$\begin{aligned} {\mathscr {H}}^{n-1}(\partial \Omega \setminus \Omega ^0)<\infty , \end{aligned}$$
(0.1)

where \({\mathscr {H}}^{n-1}\) is the \((n-1)\) dimensional Hausdorff measure and \(\Omega ^0\) is the measure-theoretic exterior of \(\Omega \). Stronger results are obtained on a subclass of such domains, which are outward minimizing domains. We also obtain new weak regularity results for generalized Cheeger sets as byproducts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Ambrosio, L., Caselles, V., Masnou, S., Morel, J.M.: Connected components of sets of finite perimeter and applications to image processing. J. Eur. Math. Soc. 3(1), 39–92 (2001)

    Article  MATH  Google Scholar 

  2. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs, Clarendon Press, Oxford University Press, New York (2000)

    MATH  Google Scholar 

  3. Ambrosio, L., Paolini, E.: Partial regularity for quasi minimizers of perimeter. Ricerche Mat. 48, 167–186 (1999)

    MATH  Google Scholar 

  4. Anzellotti, G., Giaquinta, M.: Funzioni bv e tracce. Rend. Sem. Mat. Univ. Padova 60, 1–21 (1978)

    MATH  Google Scholar 

  5. Barozzi, E., Gonzalez, E., Massari, U.: Pseudoconvex sets. Ann. Univ. Ferrara 55, 23–35 (2009)

    Article  MATH  Google Scholar 

  6. Buffa, V., Miranda, M. Jr: Rough traces of BV functions in metric measure spaces. arXiv:1907.01673

  7. Chen, G.-Q., Comi, G., Torres, M.: Cauchy fluxes and Gauss-Green formulas for divergence-measure fields over general open sets. Arch. Ration. Mech. Anal. 233, 87–166 (2019)

    Article  MATH  Google Scholar 

  8. Chen, G.-Q., Frid, H.: Divergence-measure fields and hyperbolic conservation laws. Arch. Rational Mech. Anal. 147, 89–118 (1999)

    Article  MATH  Google Scholar 

  9. Chen, G.-Q., Li, Q., Torres, M.: Traces and extensions of bounded divergence-measure fields in rough domains. Indiana Univ. Math. J. 69, 229–264 (2020)

    Article  MATH  Google Scholar 

  10. Chen, G., Torres, M.: Divergence-measure fields, sets of finite perimeter and conservation laws. Arch. Rat. Mech. Anal. 175(2), 245–267 (2005)

    Article  MATH  Google Scholar 

  11. Chen, G., Torres, M., Ziemer, W.: Gauss-Green theorem for weakly differentiable vector fields, sets of finite perimeter, and balance laws. Commun. Pure Appl. Math. 62(2), 242–304 (2009)

    Article  MATH  Google Scholar 

  12. Evans, C., Gariepy, D.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton, FL (1992)

    MATH  Google Scholar 

  13. Figalli, A., Maggi, F., Pratelli, A.: A note on Cheeger sets. Proc. Amer. Math. Soc. 137, 2057–2062 (2009)

    Article  MATH  Google Scholar 

  14. Ferriero, A., Fusco, N.: A note on the convex hull of sets of finite perimeter in the plane, discrete and continuous dynamical systems series B, Vol 11, Number 1, (2009)

  15. Comi, G., Torres, M.: One-sided approximation of sets of finite perimeter. Rend. Lincei Mat. Appl. 28(1), 181–190 (2017)

    MATH  Google Scholar 

  16. Giusti, E.: Minimal Surfaces and Functions of Bounded Variation, Monographs in Mathematics, Volume 80, (1984)

  17. Gui, C., Hu, Y., Li, Q.: On smooth interior approximation of sets of finite perimeter. Accepted by Proceedings of American Mathematical Society

  18. Huisken, Gerhard, Ilmanen, Tom: The inverse mean curvature flow and the Riemannian Penrose inequality. J. Diff. Geom. 59(3), 353–437 (2001)

    MATH  Google Scholar 

  19. Kosinski, A.: A proof of an Auerbach-Banach-Mazur-Ulam theorem on convex bodies. Colloq. Math. 17, 216–218 (1957)

    Article  MATH  Google Scholar 

  20. Lahti, P., Shanmugalingam, N.: Trace theorems for functions of bounded variation in metric spaces. J. Funct. Anal. 274(10), 2754–2791 (2018)

    Article  MATH  Google Scholar 

  21. Leonardi, G., Saracco, G.: The prescribed mean curvature in weakly regular domains. NoDEA Nonlinear Differ. Equ. Appl

  22. Li, Q., Torres, M.: Morrey spaces and generalized Cheeger set. Adv. Calculus Variat. (2017)

  23. Li, Q., Wang, C.: On nematic liquid crystal droplets, preprint

  24. Maggi, F.: Sets of Finite Perimeter and Geometric Variational Problems Cambridge, (2011)

  25. Maz’ya, V.: Sobolev Spaces with Applications to Elliptic Partial Differential Equations. Vol 342. Springer: Berlin, 2nd edn, (2011)

  26. Marola, N., Miranda, M., Jr., Shanmugalingam, N.: Boundary measures, generalized Gauss-Green formulas, and mean value property in metric measure spaces. Rev. Mat. Iberoam. 31(2), 497–530 (2015)

    Article  MATH  Google Scholar 

  27. Saracco, G.: Weighted Chegger sets are domains of isoperimetry. Manuscripta Mathematica. July (2018), Volume 156, Issue 3-4, pp 371-381

  28. Schmidt, T.: Strict interior approximation of sets of finite perimeter and functions of bounded variation. Proc. Am. Math. Soc. 143(5), 2069–2084 (2015)

    Article  MATH  Google Scholar 

  29. Scheven, C., Schmidt, T.: BV supersolutions to equations of 1-Laplace and minimal surface type. J. Differ. Eq. 261, 1904–1932 (2016)

    Article  MATH  Google Scholar 

  30. Šilhavý, M.: The existence of the flux vector and the divergence theorem for general Cauchy fluxes. Arch. Ration. Mech. Anal. 90, 195–212 (1985)

    Article  MATH  Google Scholar 

  31. Šilhavý, M.: Cauchy’s stress theorem and tensor fields with divergences in \(L^p\). Arch. Ration. Mech. Anal. 116, 223–255 (1991)

    Article  MATH  Google Scholar 

  32. Šilhavý, M.: Divergence-measure fields and Cauchy’s stress theorem. Rend. Sem. Mat Padova 113, 15–45 (2005)

    MATH  Google Scholar 

  33. Šilhavý, M.: The divergence theorem for divergence measure vectorfields on sets with fractal boundaries. Math. Mech. Solids 14, 445–455 (2009)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

C. Gui is partially supported by NSF grants DMS-1901914 and DMS-2155183. Y. Hu is partially supported by NSFC NO.12101612 and NSFC NO.12171456. Research of Qinfeng Li is supported by the National Science Fund for Youth Scholars (No. 1210010723) and the Fundamental Research Funds for the Central Universities, Hunan Provincial Key Laboratory of Intelligent Information Processing and Applied Mathematics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changfeng Gui.

Additional information

Communicated by L. Szekelyhidi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gui, C., Hu, Y. & Li, Q. Extensions and traces of BV functions in rough domains and generalized Cheeger sets. Calc. Var. 62, 38 (2023). https://doi.org/10.1007/s00526-022-02377-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-022-02377-3

Mathematics Subject Classification

Navigation