Skip to main content
Log in

Conformal Dirac–Einstein equations on manifolds with boundary.

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper we study Dirac–Einstein equations on manifolds with boundary, restricted to a conformal class with constant boundary volume, under chiral bag boundary conditions for the Dirac operator. We characterize the bubbling phenomenon, also classifying ground state bubbles. Finally, we prove an Aubin-type inequality and a related existence result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I. Comm. Pure Appl. Math. 12, 623–727 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  2. Almaraz, S., Barbosa, E., de Lima, L.L.: A positive mass theorem for asymptotically flat manifolds with a non-compact boundary. Comm. Anal. Geom. 24(4), 673–715 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ammann, B., Weiss, H., Witt, F.: A spinorial energy functional: critical points and gradient flow. Math. Ann. 365(3–4), 1559–1602 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Atiyah, M., Patodi, V.K., Singer, I.M.: Spectral asymmetry and Riemannian geometry, I, II and III. Math. Proc. Cambridge Phil. Soc. 77, 43–69 (1975)

    Article  MATH  Google Scholar 

  5. Bär, C., Gauduchon, P., Moroianu, A.: Generalized cylinders in semi-Riemannian and spin geometry. Math. Z. 249(3), 545–580 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bartnik, R., Chruściel, P.: Boundary value problems for Dirac-type equations. J. Reine Angew. Math. 579, 13–73 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Belgun, F.A.: The Einstein–Dirac equation on Sasakian 3-manifolds. J. Geom. Phys. 37(3), 229–236 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Borrelli, W., Maalaoui, A.: Some properties of Dirac–Einstein bubbles. J. Geom. Anal. 31, 5766–5782 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  9. Borrelli, W., Malchiodi, A., Wu, R.: Ground state Dirac bubbles and Killing spinors. Commun. Math. Phys. 383, 1151–1180 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bourguignon, J.-P., Gauduchon, P.: Spineurs, opérateurs de Dirac et variations de métriques. Commun. Math. Phys. 144, 581–599 (1992)

    Article  MATH  Google Scholar 

  11. Chen, Q., Jost, J., Sun, L., Zhu, M.: Estimates for solutions of Dirac equations and an application to a geometric elliptic-parabolic problem. J. Eur. Math. Soc. (JEMS) 21(3), 665–707 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chrusciel, P.T., Maerten, D.: Killing vectors in asymptotically flat space-times. II. Asymptotically translational Killing vectors and the rigid positive energy theorem in higher dimensions. J. Math. Phys. 47, 022502 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Escobar, J.F.: The Yamabe problem on manifolds with boundary. J. Differ. Geom. 35(1), 21–84 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Farinelli, S., Schwarz, G.: On the spectrum of the Dirac operator under boundary conditions. J. Geom. Phys. 28(1–2), 67–84 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Finster, F., Smoller, J., Yau, S.T.: Particle-like solutions of the Einstein–Dirac equations, Phys. Rev. D. Particles and Fields. Third Series 59 (1999)

  16. Fukuda, T., Hosomichi, K.: Super-Liouville theory with boundary. Nuclear Phys. B 635(1–2), 215–254 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ginoux, N.: The Dirac Spectrum. Lecture Notes in Mathematics, vol. 1976. Springer-Verlag, Berlin (2009)

    MATH  Google Scholar 

  18. Gibbons, G., Hawking, S.: Action integrals and partition functions in quantum gravity. Phys. Rev. D 15, 2752–2756 (1977)

    Article  Google Scholar 

  19. Gibbons, G., Hawking, S., Horowitz, G., Perry, M.: Positive mass theorems for black holes. Commun. Math. Phys. 88, 295–308 (1983)

    Article  MathSciNet  Google Scholar 

  20. Güneysu, B., Pigola, S.: The Calderón–Zygmund inequality and Sobolev spaces on noncompact Riemannian manifolds. Adv. Math. 281, 353–393 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Guidi, C., Maalaoui, A., Martino, V.: Existence results for the conformal Dirac–Einstein system. Adv. Nonlinear Stud. 21(1), 107–117 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  22. Herzlich, M.: The positive mass theorem for black holes revisited. J. Geom. Phys. 26, 97–111 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Herzlich, M.: A Penrose-like inequality for the mass of Riemannian asymptotically flat manifolds. Commun. Math. Phys. 188, 121–133 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hirsch, S., Miao, P.: A positive mass theorem for manifolds with boundary. Pacific J. Math. 306(1), 185–201 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hitchin, N.: Harmonic spinors. Adv. Math. 14, 1–55 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  26. Isobe, T.: Nonlinear Dirac equations with critical nonlinearities on compact Spin manifolds. J. Funct. Anal. 260(1), 253–307 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jevnikar, A., Malchiodi, A., Wu, R.: Existence results for a super-Liouville equation on compact surfaces. Trans. Amer. Math. Soc. 373(12), 8837–8859 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jevnikar, A., Malchiodi, A., Wu, R.: Existence results for super-Liouville equations on the sphere via bifurcation theory. J. Math. Study 54(1), 89–122 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hijazi, O., Montiel, S., Roldán, A.: Eigenvalue boundary problems for the Dirac opreator. Commun. Math. Phys. 231, 375–390 (2002)

    Article  MATH  Google Scholar 

  30. Jost, J.: Riemannian Geometry and Geometric Analysis. Universitext, p. xiv+697. Springer, Cham (2017)

    Book  MATH  Google Scholar 

  31. Jost, J., Wang, G., Zhou, C., Zhou, M.: Energy identities and blow-up analysis for solutions of the super-Liouville equation. J. Math. Pures Appl. 92(3), 295–312 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Jost, J., Zhou, C., Zhu, M.: Energy quantization for a singular super-Liouville boundary value problem. Math. Ann. 381(1–2), 905–969 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  33. Jost, J., Wang, G., Zhou, C., Zhu, M.: The boundary value problem for the super-Liouville equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 31(4), 685–706 (2014)

  34. Jost, J., Zhou, C., Zhu, M.: The qualitative boundary behavior of blow-up solutions of the super-Liouville equations. J. Math. Pures Appl. 01(5), 689–715 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kim, E.C., Friedrich, T.: The Einstein–Dirac equation on Riemannian spin manifolds. J. Geom. Phys. 33(1–2), 128–172 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lawson, H.B., Jr., Michelsohn, M.L.: Spin Geometry. Princeton Mathematical Series, vol. 38, p. xii+427. Princeton University Press, Princeton (1989)

    MATH  Google Scholar 

  37. Lee, J., Parker, T.: Tha Yamabe problem. Bull. Amer. Math. Soc. 17(1): 37–91

  38. Lions, J.-L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications, vol. Id, p. xvi+357. Springer-Verlag, New York-Heidelberg (1972)

    Book  MATH  Google Scholar 

  39. Maalaoui, A.: Rabinowitz–Floer homology for superquadratic Dirac equations on compact spin manifolds. J. Fix. Point Theory A. 13(1), 175–199 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Maalaoui, A., Martino, V.: Compactness of Dirac–Einstein spin manifolds and horizontal deformations. J. Geom. Anal. 32, 201 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  41. Maalaoui, A., Martino, V.: The Rabinowitz–Floer homology for a class of semilinear problems and applications. J. Funct. Anal. 269, 4006–4037 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Maalaoui, A., Martino, V.: Homological approach to problems with jumping non-linearity. Nonlinear Anal. 144, 165–181 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  43. Maalaoui, A., Martino, V.: Characterization of the Palais–Smale sequences for the conformal Dirac–Einstein problem and applications. J. Differ. Equ. 266(5), 2493–2541 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  44. Pankov, A.: Periodic nonlinear Schrödinger equation with application to photonic crystals. Milan J. Math. 73, 259–287 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  45. Raulot, S.: The Hijazi inequality on manifolds with boundary. J. Geom. Phys. 56(11), 2189–2202 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  46. Raulot, S.: On a spin conformal invariant on manifolds with boundary. Math. Z. 261(2), 321–349 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  47. Schoen, R., Yau, S.-T.: On the proof of the positive mass conjecture in general relativity. Comm. Math. Phys. 65(1), 45–76 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  48. Szulkin, A., Weth, T.: The method of Nehari manifold. In: Handbook of Nonconvex Analysis and Applications, pp. 597–632. International Press, Somerville (2010)

    MATH  Google Scholar 

  49. Witten, E.: A new proof of the positive energy theorem. Comm. Math. Phys. 80(3), 381–402 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  50. York, J.: Role of conformal three-geometry in the dynamics of gravitation. Phys. Rev. Lett. 28, 1082–1085 (1972)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the reviewer for careful reading the manuscript and for the accurate remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Borrelli.

Additional information

Communicated by Andrea Mondino.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borrelli, W., Maalaoui, A. & Martino, V. Conformal Dirac–Einstein equations on manifolds with boundary.. Calc. Var. 62, 18 (2023). https://doi.org/10.1007/s00526-022-02354-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-022-02354-w

Mathematics Subject Classification

Navigation