Skip to main content
Log in

On global minimizers for a mass constrained problem

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In any dimension \(N \ge 1\), for given mass \(m > 0\) and for the \(C^1\) energy functional

$$\begin{aligned} I(u):=\frac{1}{2}\int _{{\mathbb {R}}^N}|\nabla u|^2dx-\int _{{\mathbb {R}}^N}F(u)dx, \end{aligned}$$

we revisit the classical problem of finding conditions on \(F \in C^1({\mathbb {R}},{\mathbb {R}})\) insuring that I admits global minimizers on the mass constraint

$$\begin{aligned} S_m:=\left\{ u\in H^1({\mathbb {R}}^N)~|~\Vert u\Vert ^2_{L^2({\mathbb {R}}^N)}=m\right\} . \end{aligned}$$

Under assumptions that we believe to be nearly optimal, in particular without assuming that F is even, any such global minimizer, called energy ground state, proves to have constant sign and to be radially symmetric monotone with respect to some point in \({\mathbb {R}}^N\). Moreover, we show that any energy ground state is a least action solution of the associated action functional. This last result answers positively, under general assumptions, a long standing issue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berestycki, H., Lions, P.L.: Nonlinear scalar field equations I: Existence of a ground state. Arch. Rat. Mech. Anal. 82, 313–346 (1983)

    Article  MathSciNet  Google Scholar 

  2. Brothers, J.E., Ziemer, W.P.: Minimal rearrangements of Sobolev functions. J. Reine Angew. Math. 384, 153–179 (1988)

    MathSciNet  MATH  Google Scholar 

  3. Byeon, J., Jeanjean, L., Tanaka, K.: Standing waves for nonlinear Schrödinger equations with a general nonlinearity: one and two dimensional cases. Commun. Partial Differ. Equ. 33, 1113–1136 (2008)

    Article  Google Scholar 

  4. Carles, R., Klein, C., Sparber, C.: On ground state (in-)stability in multi-dimensional cubic-quintic Schrödinger equations. arXiv:2012.11637 (2020)

  5. Carles, R. Sparber, C.: Orbital stability vs. scattering in the cubic-quintic Schrödinger equation. Rev. Math. Phys., 33, Article number: 2150004 (2021)

  6. Cazenave, T.: Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics (Vol. 10). American Mathematical Society, Providence (2003)

  7. Cazenave, T., Lions, P.L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85, 549–561 (1982)

    Article  Google Scholar 

  8. Cingolani, S., Gallo, M., Tanaka, K.: Normalized solutions for fractional nonlinear scalar field equations via Lagrangian formulation. Nonlinearity 34, 4017–4056 (2021)

    Article  MathSciNet  Google Scholar 

  9. Cingolani, S., Tanaka, K.: Ground State Solutions for the Nonlinear Choquard Equation with Prescribed Mass, to Appear on Geometric Properties for Parabolic and Elliptic PDE’s. INdAM Springer Series, Cortona (2019)

    Google Scholar 

  10. Dovetta, S., Serra, E., Tilli, P.: Action versus energy ground states in nonlinear Schrödinger equations. Math. Ann. (2022). https://doi.org/10.1007/s00208-022-02382-z

    Article  Google Scholar 

  11. Fernandez, A.J., Jeanjean, L., Mandel, R., Maris, M.: Non-homogeneous Gagliardo Nirenberg inequalities in \( \mathbf{ R}^N\) and application to a biharmonic non-linear Schrödinger equation. J. Differ. Equ. 330, 1–65 (2022)

    Article  Google Scholar 

  12. Hajaiej, H., Stuart, C.A.: On the variational approach to the stability of standing waves for the nonlinear Schrödinger equation. Adv. Nonlinear Stud. 4, 469–501 (2004)

    Article  MathSciNet  Google Scholar 

  13. Hirata, J., Tanaka, K.: Nonlinear scalar field equations with \(L^2\) constraint: mountain pass and symmetric mountain pass approaches. Adv. Nonlinear Stud. 19, 263–290 (2019)

    Article  MathSciNet  Google Scholar 

  14. Ikoma, N.: Compactness of minimizing sequences in nonlinear Schrödinger systems under multiconstraint conditions. Adv. Nonlinear Stud. 14, 115–136 (2014)

    Article  MathSciNet  Google Scholar 

  15. Ilyasov, Y.: On orbital stability of the physical ground states of the NLS equations. arXiv:2103.16353 (2021)

  16. Jeanjean, L., Lu, S.-S.: Nonradial normalized solutions for nonlinear scalar field equations. Nonlinearity 32, 4942–4966 (2019)

    Article  MathSciNet  Google Scholar 

  17. Jeanjean, L., Lu, S.-S.: A mass supercritical problem revisited. Calc. Var. Partial Differ. Equ. 59, Article number: 174 (2020)

  18. Jeanjean, L., Lu, S.-S.: Normalized solutions with positive energies for a coercive problem and application to the cubic-quintic nonlinear Schrödinger equation. Math. Models Methods Appl. Sci. 32, 1557–1588 (2022)

    Article  MathSciNet  Google Scholar 

  19. Jeanjean, L., Tanaka, K.: A remark on least energy solutions in \({\mathbb{R} }^N\). Proc. Am. Math. Soc. 131, 2399–2408 (2003)

    Article  Google Scholar 

  20. Jeanjean, L., Tanaka, K.: A note on a mountain pass characterization of least energy solutions. Adv. Nonlinear Stud. 3, 461–471 (2003)

    Article  MathSciNet  Google Scholar 

  21. Killip, R., Oh, T., Pocovnicu, O., Visan, M.: Solitons and scattering for the cubic-quintic nonlinear Schrödinger equation on \({\mathbb{R} }^3\). Arch. Ration. Mech. Anal. 225, 469–548 (2017)

    Article  MathSciNet  Google Scholar 

  22. Lenzmann, E., Weth, T.: Symmetry breaking for ground states of biharmonic NLS via Fourier extension estimates. arXiv:2110.10782 (2021)

  23. Lewin, M., Rota Nodari, S.: The double-power nonlinear Schrödinger equation and its generalizations: uniqueness, non-degeneracy and applications. Calc. Var. Partial Differ. Equ. 59, Article number: 197 (2020)

  24. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case, part 1. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 109–145 (1984)

  25. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case, part 2. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 223–283 (1984)

  26. Mariş, M.: On the symmetry of minimizers. Arch. Ration. Mech. Anal. 192, 311–330 (2009)

    Article  MathSciNet  Google Scholar 

  27. Shibata, M.: Stable standing waves of nonlinear Schrödinger equations with a general nonlinear term. Manuscripta Math. 143, 221–237 (2014)

    Article  MathSciNet  Google Scholar 

  28. Stefanov, A.: On the normalized ground states of second order PDE’s with mixed power non-linearities. Commun. Math. Phys. 369, 929–971 (2019)

    Article  MathSciNet  Google Scholar 

  29. Stuart, C.A.: Bifurcation for Dirichlet problems without eigenvalues. Proc. Lond. Math. Soc. 45, 169–192 (1982)

    Article  MathSciNet  Google Scholar 

  30. Szulkin, A., Weth, T.: The method of Nehari manifold. In: Handbook of Nonconvex Analysis and Applications (pp. 597–632). Int. Press, Somerville (2010)

Download references

Acknowledgements

The authors thank Prof. Thierry Cazenave for useful remarks on a preliminary version of this work. Sheng-Sen Lu acknowledges the support of the China Postdoctoral Science Foundation (No. 2020M680174) and the National Natural Science Foundation of China (Nos. 11771324 and 11831009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis Jeanjean.

Additional information

Communicated by A. Neves.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeanjean, L., Lu, SS. On global minimizers for a mass constrained problem. Calc. Var. 61, 214 (2022). https://doi.org/10.1007/s00526-022-02320-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-022-02320-6

Mathematics Subject Classification

Navigation