Skip to main content
Log in

The effects of dispersal and spatial heterogeneity on the dynamics of a predator–prey model

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We investigate a diffusive predator–prey model in spatially heterogeneous environments. When the intrinsic growth rate of the prey is constant and the intrinsic growth rate of the predator is non-constant, we completely study how the semi-trivial steady states step-wisely change their stability as the dispersal rates of the prey and predator vary. Moreover, we can obtain multiple positive steady states of this model and determine their stability. In particular, if the dispersal rate of the prey is considered as bifurcation parameter, then the local bifurcation results can be generalized to a global one. We also investigate the stability of the semi-trivial steady states when both the intrinsic growth rate of the prey and the intrinsic growth rate of the predator are non-constant. Finally, when the dispersal rates of the prey and predator are simultaneously regarded as bifurcation parameters, we can deduce positive steady state of this model and derive its stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Blat, J., Brown, K.J.: Bifurcation of steady-state solutions in predator–prey and competition systems. Proc. R. Soc. Edin. A 97, 21–34 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blat, J., Brown, K.J.: Global bifurcation of positive solutions in some systems of elliptic equations. SIAM J. Math. Anal. 17, 1339–1353 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brown, K.J., Lin, C.C.: On the existence of positive eigenfunctions for an eigenvalue problem with indefinite weight function. J. Math. Anal. Appl. 75, 112–120 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cantrell, R.S., Conser, C.: Diffusive logistic equations with indefinite weights: population models in disrupted environments. Proc. R. Soc. Edin. A 112, 293–318 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cantrell, R.S., Conser, C.: Spatial Ecology via Reaction–Diffusion Equations. Series in Mathematical and Computational Biology. Wiley, Chichester (2003)

    Google Scholar 

  6. Crandall, M.G., Rabinowitz, P.H.: Bifurcation from simple eigenvalues. J. Funct. Anal. 8, 321–340 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  7. Crandall, M.G., Rabinowitz, P.H.: Bifurcation, pertubation from simple eigenvalues and linearized stability. Arch. Rat. Mech. Anal. 52, 161–180 (1973)

    Article  MATH  Google Scholar 

  8. Cosner, C.: Reaction–diffusion–advection models for the effects and evolution of dispersal. Discrete Contin. Dyn. Syst. 34, 1701–1745 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dancer, E.N.: On positive solutions of some pairs of differential equations. Trans. Am. Math. Soc. 284, 729–743 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dancer, E.N.: On positive solutions of some pairs of differential equations. II. J. Differ. Equ. 60, 236–258 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dancer, E.N., Du, Y.H.: Effects of certain degeneracies in the predator–prey model. SIAM J. Math. Anal. 34, 292–314 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dockery, J., Hutson, V., Mischaikow, K., Pernarowski, M.: The evolution of slow dispersal rates: a reaction–diffusion model. J. Math. Biol. 37, 61–83 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Du, Y.H.: Effects of a degeneracy in the competition model. Part I. Classical and generalized steady-state solutions. J. Differ. Equ. 181, 92–132 (2002)

    Article  MATH  Google Scholar 

  14. Du, Y.H.: Effects of a degeneracy in the competition model. Part II. Perturbation and dynamical behaviour. J. Differ. Equ. 181, 133–164 (2002)

    Article  MATH  Google Scholar 

  15. Du, Y.H., Hsu, S.B.: A diffusive predator–prey model in heterogeneous environment. J. Differ. Equ. 203, 331–364 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Du, Y.H., Shi, J.P.: Some recent results on diffusive predator–prey models in spatially heterogeneous environment. In: Brunner, H., Zhao, X.Q., Zou, X.F. (eds.) Nonlinear Dynamics and Evolution Equations. Fields Institute Communications, vol. 48, pp. 95–135. American Mathematical Society, Providence (2006)

    Google Scholar 

  17. Flaxman, S.M., Lou, Y.: Tracking prey or tracking the prey’s resource? Mechanisms of movement and optimal habitat selection by predators. J. Theor. Biol. 256, 187–200 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Furter, J.E., López-Gómez, J.: Diffusion mediated permanence problem for a heterogeneous Lotka–Volterra competition model. Proc. R. Soc. Edin. A 127, 281–336 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equation of Second Order, 2nd edn. Springer, Berlin (1983)

    MATH  Google Scholar 

  20. Hale, J.K.: Bifurcation from simple eigenvalues for several parameter families. Nonl. Anal. 2, 491–497 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  21. He, X.Q., Ni, W.M.: The effects of diffusion and spatial variation in Lotka–Volterra competition–diffusion system I: heterogeneity vs. homogeneity. J. Differ. Equ. 254, 528–546 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. He, X.Q., Ni, W.M.: The effects of diffusion and spatial variation in Lotka–Volterra competition–diffusion system II: the general case. J. Differ. Equ. 254, 4088–4108 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. He, X.Q., Ni, W.M.: Global dynamics of the Lotka–Volterra competition–diffusion system: diffusion and spatial heterogeneity, I. Commun. Pure Appl. Math. 69, 981–1014 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. He, X.Q., Ni, W.M.: Global dynamics of the Lotka–Volterra competition–diffusion system with equal amount of total resources. II. Calc. Var. Partial Differ. Equ. 55, 22 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. He, X.Q., Ni, W.M.: Global dynamics of the Lotka–Volterra competition–diffusion system with equal amount of total resources. III. Calc. Var. Partial Differ. Equ. 56, 132 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hutson, V., López-Gómez, J., Mischaikow, K., Vickers, G.: Limit behavior for a competing species problem with diffusion. In: Agarwal, R.P. (ed.) Dynamical Systems and Applications. World Scientific Series Applications and Analysis, vol. 4, pp. 501–533. World Scientific, River Edge (1995)

    Google Scholar 

  27. Lam, K.Y., Ni, W.M.: Uniquenss and complete dynamics of the Lotka–Volterra competition diffusion system. SIAM J. Appl. Math. 72, 1696–1712 (2012)

    Article  Google Scholar 

  28. Li, R., Lou, Y.: Some monotone properties for solutions to a reaction–diffusion model. Discrete Contin. Dyn. Syst. Ser. B 24, 4445–4455 (2019)

    MathSciNet  MATH  Google Scholar 

  29. Liang, X., Lou, Y.: On the dependence of population size upon random dispersal rate. Discrete Contin. Dyn. Syst. Ser. B 17, 2771–2788 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. López-Gómez, J.: Multiparameter local bifurcation based on the linear part. J. Math. Anal. Appl. 138, 359–370 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  31. López-Gómez, J.: Spectral Theory and Nonlinear Functional Analysis. Research Notes in Mathematics, vol. 426. Chapman and Hall/CRC, Boca Raton (2001)

    Book  Google Scholar 

  32. López-Gómez, J.: Linear Second Order Elliptic Operators. World Scientific, Singapore (2013)

    Book  MATH  Google Scholar 

  33. López-Gómez, J.: Global bifurcation for Fredholm operators. Rend. Istit. Mat. Univ. Trieste 48, 539–564 (2016)

    MathSciNet  MATH  Google Scholar 

  34. López-Gómez, J., Muoz-Hernández, E.: A spatially heterogeneous predator prey model. Discrete Contin. Dyn. Syst. Ser. B 26, 2085–2113 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  35. López-Gómez, J., Muoz-Hernández, E.: Global structure of subharmonics in a class of periodic predator–prey models. Nonlinearity 33, 34–71 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  36. López-Gómez, J., Pardo, R.: Multiparameter nonlinear eigenvalue problems: positive solutions to elliptic Lotka–Volterra systems. Appl. Anal. 31, 103–127 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lou, Y.: On the effects of migration and spatial heterogeneity on single and multiple species. J. Differ. Equ. 223, 400–426 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lou, Y.: Some challenging mathematical problems in evolution of dispersal and population dynamics. In: Friedman, A. (ed.) Tutorials in Mathematics Biosciences, vol. IV: Evolution and Ecology. Lecture Notes Mathematics vol. 1922, pp. 171–205. Springer, New York (2007)

  39. Lou, Y., Wang, B.: Local dynamics of a diffusive predator–prey model in spatially heterogeneous environment. J. Fixed Point Theory Appl. 19, 755–772 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ni, W.M.: The mathematics of diffusion. In: CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 82. SIAM, Philadelphia (2011)

  41. Rabinowitz, P.H.: Some global results for nonlinear eigenvalue problems. J. Funct. Anal. 7, 487–513 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  42. Shi, J.P., Wang, X.F.: On global bifurcation for quasilinear elliptic systems on bounded domains. J. Differ. Equ. 246, 2788–2812 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang, B.: Positive steady states of a diffusive predator–prey system with predator cannibalism. Acta Math. Sci. Ser. B. 37, 1385–1398 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wang, B., Wu, J.H.: Multiple positive steady states of a diffusive predator–prey model in spatially heterogeneous environments. Math. Nachr. 294, 616–630 (2021)

    Article  MathSciNet  Google Scholar 

  45. Wang, B., Zhang, Z.C.: Bifurcation analysis of a diffusive predator–prey model in spatially heterogeneous environment. Electron. J. Qual. Theory. Differ. Equ. 42, 1–17 (2017)

    MathSciNet  Google Scholar 

  46. Wang, B., Zhang, Z.C.: Dynamics of a diffusive competition model in spatially heterogeneous environment. J. Math. Anal. Appl. 470, 169–185 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wang, Q.: Qualitative analysis of a Lotka–Volterra predator–prey system with migration. J. Math. Anal. Appl. 472, 421–431 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wu, J.H., Ma, C., Guo, G.H.: The effect of interaction ratio in a chemical reaction. IMA J. Appl. Math. 78, 1265–1289 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  49. Yamada, Y.: Stability of steady states for prey–predator diffusion equations with homogeneous Dirichlet conditions. SIAM J. Appl. Math. 21, 327–345 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  50. Yi, F.Q., Wei, J.J., Shi, J.P.: Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator–prey system. J. Differ. Equ. 246, 1944–1977 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees for careful reading and valuable suggestions that significantly improved the exposition of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Wu.

Additional information

Communicated by A. Neves.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work was supported by the National Science Foundation of China (Nos. 11801436, 12171296) and Natural Science Basic Research Plan in Shaanxi Province of China (No. 2019JQ-346)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Wu, J. The effects of dispersal and spatial heterogeneity on the dynamics of a predator–prey model. Calc. Var. 61, 211 (2022). https://doi.org/10.1007/s00526-022-02319-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-022-02319-z

Keywords

Mathematics Subject Classification

Navigation