Skip to main content
Log in

A solution to Newton’s least resistance problem is uniquely defined by its singular set

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Let u minimize the functional \(F(u) = \int _\Omega f(\nabla u(x))\, dx\) in the class of convex functions \(u : \Omega \rightarrow {{\mathbb {R}}}\) satisfying \(0 \le u \le M\), where \(\Omega \subset {{\mathbb {R}}}^2\) is a compact convex domain with nonempty interior and \(M > 0\), and \(f : {{\mathbb {R}}}^2 \rightarrow {{\mathbb {R}}}\) is a \(C^2\) function, with \(\{ \xi : \, \text {the smallest eigenvalue of} \, f''(\xi ) \, \text {is zero} \}\) being a closed nowhere dense set in \({{\mathbb {R}}}^2\). Let epi(u) denote the epigraph of u. Then any extremal point (xu(x)) of epi(u) is contained in the closure of the set of singular points of epi(u). As a consequence, an optimal function u is uniquely defined by the set of singular points of epi(u). This result is applicable to the classical Newton’s problem, where \(F(u) = \int _\Omega (1 + |\nabla u(x)|^2)^{-1}\, dx\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Notes

  1. Since the set of regular points of u is a full-measure subset of \(\Omega \) and the vector function \(x \mapsto \nabla u(x)\) is measurable, F(u) is well defined.

References

  1. Akopyan, A., Plakhov, A.: Minimal resistance of curves under the single impact assumption. SIAM J. Math. Anal. 47, 2754–2769 (2015)

    Article  MathSciNet  Google Scholar 

  2. Bachurin, P., Khanin, K., Marklof, J., Plakhov, A.: Perfect retroreflectors and billiard dynamics. J. Modern Dynam. 5, 33–48 (2011)

    Article  MathSciNet  Google Scholar 

  3. Brock, F., Ferone, V., Kawohl, B.: A symmetry problem in the calculus of variations. Calc. Var. Partial Differ. Equ. 4, 593–599 (1996)

    Article  MathSciNet  Google Scholar 

  4. Buttazzo, G., Ferone, V., Kawohl, B.: Minimum problems over sets of concave functions and related questions. Math. Nachr. 173, 71–89 (1995)

    Article  MathSciNet  Google Scholar 

  5. Buttazzo, G., Guasoni, P.: Shape optimization problems over classes of convex domains. J. Convex Anal. 4(2), 343–351 (1997)

    MathSciNet  MATH  Google Scholar 

  6. Buttazzo, G., Kawohl, B.: On Newton’s problem of minimal resistance. Math. Intell. 15, 7–12 (1993)

    Article  MathSciNet  Google Scholar 

  7. Carlier, G., Lachand-Robert, T.: Convex bodies of optimal shape. J. Convex Anal. 10, 265–273 (2003)

    MathSciNet  MATH  Google Scholar 

  8. Comte, M., Lachand-Robert, T.: Newton’s problem of the body of minimal resistance under a single-impact assumption. Calc. Var. Partial Differ. Equ. 12, 173–211 (2001)

    Article  MathSciNet  Google Scholar 

  9. Comte, M., Lachand-Robert, T.: Existence of minimizers for Newton’s problem of the body of minimal resistance under a single-impact assumption. J. Anal. Math. 83, 313–335 (2001)

    Article  MathSciNet  Google Scholar 

  10. Lachand-Robert, T., Oudet, E.: Minimizing within convex bodies using a convex hull method. SIAM J. Optim. 16, 368–379 (2006)

    Article  MathSciNet  Google Scholar 

  11. Lachand-Robert, T., Peletier, M.A.: Newton’s problem of the body of minimal resistance in the class of convex developable functions. Math. Nachr. 226, 153–176 (2001)

    Article  MathSciNet  Google Scholar 

  12. Lachand-Robert, T., Peletier, M.A.: Extremal points of a functional on the set of convex functions. Proc. Amer. Math. Soc. 127, 1723–1727 (1999)

    Article  MathSciNet  Google Scholar 

  13. Lokutsievskiy, L.V., Zelikin, M.I.: The analytical solution of Newton’s aerodynamic problem in the class of bodies with vertical plane of symmetry and developable side boundary. ESAIM Control Optim. Calc. Var. 26, 15 (2020)

    Article  MathSciNet  Google Scholar 

  14. Mainini, E., Monteverde, M., Oudet, E., Percivale, D.: The minimal resistance problem in a class of non convex bodies. ESAIM Control Optim. Calc. Var. 25, 27 (2019)

    Article  MathSciNet  Google Scholar 

  15. Marcellini, P.: Nonconvex integrals of the Calculus of Variations. Proceedings of “Methods of Nonconvex Analisys”, Lecture Notes in Math. 1446, 16-57 (1990)

  16. Newton, I.: Philosophiae naturalis principia mathematica. London: Streater (1687)

  17. Plakhov, A.: Billiard scattering on rough sets: Two-dimensional case. SIAM J. Math. Anal. 40, 2155–2178 (2009)

    Article  MathSciNet  Google Scholar 

  18. Plakhov, A.: Billiards and two-dimensional problems of optimal resistance. Arch. Ration. Mech. Anal. 194, 349–382 (2009)

    Article  MathSciNet  Google Scholar 

  19. Plakhov, A.: Mathematical retroreflectors. Discr. Contin. Dynam. Syst.-A 30, 1211–1235 (2011)

    Article  MathSciNet  Google Scholar 

  20. Plakhov, A.: Optimal roughening of convex bodies. Canad. J. Math. 64, 1058–1074 (2012)

    Article  MathSciNet  Google Scholar 

  21. Plakhov, A.: Exterior billiards. Systems with impacts outside bounded domains. (New York: Springer), (2012), 284 pp

  22. Plakhov, A.: Problems of minimal resistance and the Kakeya problem. SIAM Review 57, 421–434 (2015)

    Article  MathSciNet  Google Scholar 

  23. Plakhov, A.: Newton’s problem of minimal resistance under the single-impact assumption. Nonlinearity 29, 465–488 (2016)

    Article  MathSciNet  Google Scholar 

  24. Plakhov, A.: Plane sets invisible in finitely many directions. Nonlinearity 31, 3914–3938 (2018)

    Article  MathSciNet  Google Scholar 

  25. Plakhov, A.: Method of nose stretching in Newton’s problem of minimal resistance. Nonlinearity 34, 4716–4743 (2021)

    Article  MathSciNet  Google Scholar 

  26. Plakhov, A., Roshchina, V.: Invisibility in billiards. Nonlinearity 24, 847–854 (2011)

    Article  MathSciNet  Google Scholar 

  27. Plakhov, A., Tchemisova, T., Gouveia, P.: Spinning rough disk moving in a rarefied medium. Proc. R. Soc. Lond. A. 466, 2033–2055 (2010)

    MATH  Google Scholar 

  28. Plakhov, A., Tchemisova, T.: Problems of optimal transportation on the circle and their mechanical applications. J. Diff. Eqs. 262, 2449–2492 (2017)

    Article  MathSciNet  Google Scholar 

  29. Plakhov, A.: The problem of camouflaging via mirror reflections. Proc. R. Soc. A 473, 20170147 (2017)

    Article  MathSciNet  Google Scholar 

  30. Plakhov, A.: A note on Newton’s problem of minimal resistance for convex bodies. Calc. Var. Partial Differ. Edu. 59, 167 (2020)

    Article  MathSciNet  Google Scholar 

  31. Plakhov, A.: On generalized Newton’s aerodynamic problem. Trans. Moscow Math. Soc. 82, 217–226 (2021)

    MathSciNet  MATH  Google Scholar 

  32. Wachsmuth, G.: The numerical solution of Newton’s problem of least resistance. Math. Program. A 147, 331–350 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by CIDMA through FCT (Fundação para a Ciência e a Tecnologia), references UIDB/04106/2020 and UIDP/04106/2020. I am very grateful to A. I. Nazarov for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Plakhov.

Additional information

Communicated by A. Mondino.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plakhov, A. A solution to Newton’s least resistance problem is uniquely defined by its singular set. Calc. Var. 61, 189 (2022). https://doi.org/10.1007/s00526-022-02300-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-022-02300-w

Mathematics Subject Classification

Navigation