Skip to main content
Log in

Serrin–type regularity criteria for the 3D MHD equations via one velocity component and one magnetic component

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we consider the 3D MHD equations in which the viscosity coefficient \(\mu \) and the resistivity coefficient \(\nu \) are equal. We show that the Serrin–type conditions imposed on one component of the velocity \(u_{3}\) and one component of magnetic fields \(b_{3}\) with

$$\begin{aligned} u_{3} \in L^{p_{0},1}(-1,0;L^{q_{0}}(B(2))),\ b_{3} \in L^{p_{1},1}(-1,0;L^{q_{1}}(B(2))), \end{aligned}$$

\(\frac{2}{p_{0}}+\frac{3}{q_{0}}=\frac{2}{p_{1}}+\frac{3}{q_{1}}=1\) and \(3<q_{0},q_{1}<+\infty \), imply that the suitable weak solution is regular at (0, 0).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caffarelli, L., Kohn, R., Nirenberg, L.: Partial regularity of suitable weak solutions of the Navier–Stokes equations. Commun. Pure Appl. Math. 35(6), 771–831 (1982). https://doi.org/10.1002/cpa.3160350604

    Article  MathSciNet  MATH  Google Scholar 

  2. Cao, C., Titi, E.S.: Global well-posedness of the three-dimensional viscous Primitive equations of large scale ocean and atmosphere dynamics. Ann. Math. 166(1), 245–267 (2007). http://www.jstor.org/stable/20160059

  3. Chae, D., Wolf, J.: On the Serrin-type condition on one velocity component for the Navier–Stokes equations. Arch. Ration. Mech. Anal. (2021). https://doi.org/10.1007/s00205-021-01636-5

    Article  MathSciNet  MATH  Google Scholar 

  4. Chemin, J.Y., Zhang, P.: On the critical one component regularity for 3-D Navier-Stokes system. Ann. Sci. Éc. Norm. Supér. 49(1), 131–167 (2016). https://doi.org/10.24033/asens.2278

    Article  MathSciNet  MATH  Google Scholar 

  5. Chemin, J.Y., Zhang, P., Zhang, Z.: On the critical one component regularity for 3-D Navier–Stokes system: general case. Arch. Ration. Mech. Anal. 224(3), 871–905 (2017). https://doi.org/10.1007/s00205-017-1089-0

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, H., Fang, D., Zhang, T.: Critical regularity criteria for Navier–Stokes equations in terms of one directional derivative of the velocity. Math. Methods Appl. Sci. 44(6), 5123–5132 (2020). https://doi.org/10.1002/mma.7097

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, Q., Miao, C., Zhang, Z.: On the regularity criterion of weak solution for the 3D viscous magneto-hydrodynamics equations. Commun. Math. Phys. 284(3), 919–930 (2008). https://doi.org/10.1007/s00220-008-0545-y

    Article  MathSciNet  MATH  Google Scholar 

  8. Duvaut, G., Lions, J.L.: Inéquations en thermoélasticité et magnétohydrodynamique. Arch. Ration. Mech. Anal. 46(4), 241–279 (1972). https://doi.org/10.1007/bf00250512

    Article  MATH  Google Scholar 

  9. Escauriaza, L., Seregin, G.A., Šverák, V.: Backward uniqueness for parabolic equations. Arch. Ration. Mech. Anal. 169(2), 147–157 (2003). https://doi.org/10.1007/s00205-003-0263-8

    Article  MathSciNet  MATH  Google Scholar 

  10. Giaquinta, M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Annals of Mathematics Studies, vol. 105. Princeton University Press, Princeton, NJ (1983)

    MATH  Google Scholar 

  11. Han, B., Lei, Z., Li, D., Zhao, N.: Sharp one component regularity for Navier–Stokes. Arch. Ration. Mech. Anal. 231(2), 939–970 (2019). https://doi.org/10.1007/s00205-018-1292-7

    Article  MathSciNet  MATH  Google Scholar 

  12. Han, B., Zhao, N.: On the critical blow up criterion with one velocity component for 3D incompressible MHD system. Nonlinear Anal. Real World Appl. (2020). https://doi.org/10.1016/j.nonrwa.2019.103000

    Article  MathSciNet  MATH  Google Scholar 

  13. He, C., Xin, Z.: On the regularity of weak solutions to the magnetohydrodynamic equations. J. Differ. Equ. 213(2), 235–254 (2005). https://doi.org/10.1016/j.jde.2004.07.002

    Article  MathSciNet  MATH  Google Scholar 

  14. He, C., Xin, Z.: Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations. J. Funct. Anal. 227(1), 113–152 (2005). https://doi.org/10.1016/j.jfa.2005.06.009

    Article  MathSciNet  MATH  Google Scholar 

  15. Kukavica, I., Rusin, W., Ziane, M.: An anisotropic partial regularity criterion for the Navier–Stokes equations. J. Math. Fluid Mech. 19(1), 123–133 (2017). https://doi.org/10.1007/s00021-016-0278-1

    Article  MathSciNet  MATH  Google Scholar 

  16. Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63(1), 193–248 (1934). https://doi.org/10.1007/BF02547354

    Article  MathSciNet  MATH  Google Scholar 

  17. Lin, F.: A new proof of the Caffarelli–Kohn–Nirenberg theorem. Commun. Pure Appl. Math. 51(3), 241–257 (1998). https://doi.org/10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A

  18. Prodi, G.: Un teorema di unicità per le equazioni di Navier–Stokes. Ann. Mat. Pura Appl. 48(1), 173–182 (1959). https://doi.org/10.1007/BF02410664

    Article  MathSciNet  MATH  Google Scholar 

  19. Rusin, W., Šverák, V.: Minimal initial data for potential Navier–Stokes singularities. J. Funct. Anal. 260(3), 879–891 (2011). https://doi.org/10.1016/j.jfa.2010.09.009

    Article  MathSciNet  MATH  Google Scholar 

  20. Sermange, M., Temam, R.: Some mathematical questions related to the MHD equations. Commun. Pure Appl. Math. 36(5), 635–664 (1983). https://doi.org/10.1002/cpa.3160360506

    Article  MathSciNet  MATH  Google Scholar 

  21. Serrin, J.: On the interior regularity of weak solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal. 9(1), 187–195 (1962). https://doi.org/10.1007/BF00253344

    Article  MathSciNet  MATH  Google Scholar 

  22. Takahashi, S.: On interior regularity criteria for weak solutions of the Navier–Stokes equations. Manuscr. Math. 69(3), 237–254 (1990). https://doi.org/10.1007/Bf02567922

    Article  MathSciNet  MATH  Google Scholar 

  23. Vyalov, V.: Partial regularity of solutions to the magnetohydrodynamic equations. J. Math. Sci. 150(1), 1771–1786 (2008). https://doi.org/10.1007/s10958-008-0095-z

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, W., Wu, D., Zhang, Z.: Scaling invariant Serrin criterion via one velocity component for the Navier–Stokes equations. eprint arXiv:2005.11906 (2020)

  25. Wang, W., Zhang, Z.: On the interior regularity criteria for suitable weak solutions of the magnetohydrodynamics equations. SIAM J. Math. Anal. 45(5), 2666–2677 (2013). https://doi.org/10.1137/120879646

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, Y.: BMO and the regularity criterion for weak solutions to the magnetohydrodynamic equations. J. Math. Anal. Appl. 328(2), 1082–1086 (2007). https://doi.org/10.1016/j.jmaa.2006.05.054

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, Z.: Remarks on the global regularity criteria for the 3D MHD equations via two components. Z. Angew. Math. Phys. 66(3), 977–987 (2015). https://doi.org/10.1007/s00033-014-0461-2

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhou, Y.: Remarks on regularities for the 3D MHD equations. Discrete Contin. Dyn. Syst. 12(5), 881–886 (2005). https://doi.org/10.3934/dcds.2005.12.881

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Hui Chen was supported by Natural Science Foundation of Zhejiang Province (LQ19A010002). Chenyin Qian was supported by Natural Science Foundation of Zhejiang Province (LY20A010017). Ting Zhang was in part supported by National Natural Science Foundation of China (11771389, 11931010, 11621101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by F.-H. Lin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Lemma A.1

([3], Lemma A.2) Let \(0<r \leqslant R<+\infty \) and \(h: B^{\prime }(2 R) \times (-r, r) \rightarrow {\mathbb {R}}\) be harmonic. Then for all \(0<\rho \leqslant \frac{r}{4}\) and \(1 \leqslant \ell \leqslant q <+\infty \), we get

$$\begin{aligned} \Vert h\Vert _{L^{q}\left( B^{\prime }(R) \times (-\rho , \rho )\right) }^{q} \leqslant C \rho r^{2- \frac{3q}{\ell }}\Vert h\Vert _{L^{\ell }\left( B^{\prime }(2 R) \times (-r, r)\right) }^{q}, \end{aligned}$$
(A.1)

where C stands for a positive constant depending only on q and \(\ell \).

We will present the estimates of J, K and H, which is defined in (3.16), in the following several lemmas.

Lemma A.2

Under the assumptions of Lemma 3.1, we have

$$\begin{aligned} J\leqslant C\sum _{i=0}^{n} \mathscr {B}_{i} \left( r_{i}^{-1} E_{i}(R)\right) +C\mathcal {E}^{\frac{3}{2}}. \end{aligned}$$
(A.2)

Proof

Let \(\pi _{0,j}={\mathscr {J}}\left( \left( \varvec{u}\otimes \varvec{u}-\varvec{b}\otimes \varvec{b}\right) \cdot \phi _{j}\right) \).

$$\begin{aligned} J=&\sum _{k=0}^{n}\int _{-1}^{t} \int _{U_{0}(R)} \pi _{0}\cdot u_{3} \cdot \partial _{3}{\Phi }_{n} \phi _{k} \psi \,\mathrm{d}x\,\mathrm{d}s\nonumber \\ =&\sum _{k=4}^{n}\sum _{j=0}^{n}\int _{-1}^{t} \int _{U_{0}(R)} \pi _{0,j}\cdot u_{3} \cdot \partial _{3}{\Phi }_{n} \phi _{k} \psi \,\mathrm{d}x\text {d}s \nonumber \\&+\sum _{k=0}^{3}\int _{-1}^{t} \int _{U_{0}(R)} \pi _{0}\cdot u_{3} \cdot \partial _{3}{\Phi }_{n} \phi _{k} \psi \,\mathrm{d}x\text {d}s \nonumber \\ =&\sum _{k=4}^{n}\sum _{j=0}^{k-4}\int _{-1}^{t} \int _{U_{0}(R)} \pi _{0,j}\cdot u_{3} \cdot \partial _{3}{\Phi }_{n} \phi _{k} \psi \,\mathrm{d}x\text {d}s \nonumber \\&+\sum _{k=4}^{n}\sum _{j=k-3}^{n}\int _{-1}^{t} \int _{U_{0}(R)} \pi _{0,j}\cdot u_{3} \cdot \partial _{3}{\Phi }_{n} \phi _{k} \psi \,\mathrm{d}x\text {d}s \nonumber \\&+\sum _{k=0}^{3}\int _{-1}^{t} \int _{U_{0}(R)} \pi _{0}\cdot u_{3} \cdot \partial _{3}{\Phi }_{n} \phi _{k} \psi \,\mathrm{d}x\text {d}s \nonumber \\ \buildrel \hbox { def}\over =&J_{1}+J_{2}+J_{3}. \end{aligned}$$
(A.3)

By (2.1), (3.14), Lemmas 2.1 and A.1 with \(\rho =r_{k}, r=r_{j+2}\), we obtain

$$\begin{aligned} J_{1} =&\sum _{j=0}^{n-4}\sum _{k=j+4}^{n}\int _{-1}^{t} \int _{U_{0}(R)} \pi _{0,j}\cdot u_{3} \cdot \partial _{3}{\Phi }_{n} \phi _{k} \psi \,\mathrm{d}x\,\mathrm{d}s\nonumber \\ \lesssim&\sum _{j=0}^{n-4}\sum _{k=j+4}^{n} r_{k}^{-2}\int _{-r_{k}^2}^{0}\Vert \pi _{0,j}\Vert _{L^{\frac{q_{0}}{q_{0}-1}}(U_{k}(R))}\Vert u_{3}\Vert _{L^{q_{0}}(U_{k}(R))} \,\mathrm{d}s\nonumber \\ \lesssim&\sum _{j=0}^{n-4}\sum _{k=j+4}^{n} r_{k}^{-1-\frac{1}{q_{0}}}r_{j}^{-1-\frac{1}{2q_{0}}}\int _{-r_{k}^2}^{0}\Vert \left( \varvec{u},\varvec{b}\right) \Vert _{L^{\frac{4q_{0}}{2q_{0}-1}}(U_{j}(R))}^{2}\Vert u_{3}\Vert _{L^{q_{0}}(U_{j}(R))} \,\mathrm{d}s\nonumber \\ \lesssim&\sum _{j=0}^{n-4}\sum _{k=j+4}^{n} r_{k}^{1-\frac{2}{p_{0}^*}-\frac{5}{2q_{0}}}r_{j}^{-1-\frac{1}{2q_{0}}}\Vert \left( \varvec{u},\varvec{b}\right) \Vert _{L^{\frac{8q_{0}}{3}}\left( -r_{j}^2,0;L^{\frac{4q_{0}}{2q_{0}-1}}(U_{j}(R))\right) }^2\nonumber \\&\times \Vert u_{3}\Vert _{L^{p_{0}^*}\left( -r_{j}^2,0;L^{q_{0}}(U_{j}(R))\right) }\nonumber \\ \lesssim&\sum _{i=0}^{n} \mathscr {B}_{i} \left( r_{i}^{-1} E_{i}(R)\right) . \end{aligned}$$
(A.4)

By (2.1), (3.14) and Lemma 2.1, we have

$$\begin{aligned} J_{2}=&\sum _{k=4}^{n}\int _{-1}^{t} \int _{U_{0}(R)} {\mathscr {J}}\left( \left( \varvec{u}\otimes \varvec{u}-\varvec{b}\otimes \varvec{b}\right) \cdot \chi _{k-3}\right) \cdot u_{3} \cdot \partial _{3}{\Phi }_{n} \phi _{k} \psi \,\mathrm{d}x\,\mathrm{d}s\nonumber \\ \lesssim&\sum _{k=4}^{n}r_{k}^{-2}\int _{-r_{k}^2}^{0}\Vert {\mathscr {J}}\left( \left( \varvec{u}\otimes \varvec{u}-\varvec{b}\otimes \varvec{b}\right) \cdot \chi _{k-3}\right) \Vert _{L^{\frac{q_{0}}{q_{0}-1}}(U_{k}(R))}\Vert u_{3}\Vert _{L^{q_{0}}(U_{k}(R))} \,\mathrm{d}s\nonumber \\ \lesssim&\sum _{k=0}^{n} r_{k}^{-2}\int _{-r_{k}^2}^{0}\Vert \left( \varvec{u},\varvec{b}\right) \Vert _{L^{\frac{2q_{0}}{q_{0}-1}}(U_{k}(R))}^{2} \Vert u_{3}\Vert _{L^{q_{0}}(U_{k}(R))} \,\mathrm{d}s\nonumber \\ \lesssim&\sum _{i=0}^{n} \mathscr {B}_{i} \left( r_{i}^{-1} E_{i}(R)\right) , \end{aligned}$$
(A.5)

which is analogous to (3.10). By (2.1) and (3.14), we get

$$\begin{aligned} J_{3}\lesssim \int _{-1}^{0}\Vert \pi _{0}\Vert _{L^{\frac{3}{2}}(U_{0}(R))} \Vert u_{3}\Vert _{L^{3}(U_{0}(R))} \,\mathrm{d}s\lesssim \int _{-1}^{0}\Vert \left( \varvec{u},\varvec{b}\right) \Vert _{L^{3}(U_{0}(R))}^3 \,\mathrm{d}s\lesssim \mathcal {E}^{\frac{3}{2}}. \end{aligned}$$
(A.6)

Summing up all the estimates of (A.3), (A.4), (A.5) and (A.6), we obtain (A.2).\(\square \)

Lemma A.3

Under the assumptions of Lemma 3.1, we have

$$\begin{aligned} K\leqslant \frac{C\mathcal {E}^{\frac{1}{2}}}{R-\rho } \sum _{i=0}^{n} r_{i}^{\frac{1}{2}}\left( r_{i}^{-1} E_{i}(R)\right) +\frac{C}{R-\rho }\mathcal {E}^{\frac{3}{2}}. \end{aligned}$$
(A.7)

Proof

$$\begin{aligned} K=&\int _{-1}^{t} \int _{U_{0}(R)} \pi _{0} \varvec{u} \cdot {\Phi }_{n} \eta \nabla \psi \,\mathrm{d}x\,\mathrm{d}s+\int _{-1}^{t} \int _{U_{0}(R)} \pi _{0} \varvec{u} \cdot {\Phi }_{n} \nabla \eta \psi \,\mathrm{d}x\,\mathrm{d}s\nonumber \\ \lesssim&\sum _{k=0}^{n}\int _{-1}^{t} \int _{U_{0}(R)} \pi _{0} \varvec{u} \cdot {\Phi }_{n} \phi _{k} \nabla \psi \,\mathrm{d}x\,\mathrm{d}s+\int _{-1}^{0}\int _{U_{0}(R)}|\pi _{0}| |\varvec{u}|\,\mathrm{d}x\,\mathrm{d}s\nonumber \\ \lesssim&\sum _{k=4}^{n}\sum _{j=0}^{n}\int _{-1}^{t} \int _{U_{0}(R)} \pi _{0,j} \ \varvec{u} \cdot {\Phi }_{n} \phi _{k} \nabla \psi \,\mathrm{d}x\,\mathrm{d}s\nonumber \\&+\sum _{k=0}^{3}\int _{-1}^{t} \int _{U_{0}(R)} \pi _{0} \varvec{u} \cdot {\Phi }_{n} \phi _{k} \nabla \psi \,\mathrm{d}x\,\mathrm{d}s+\int _{-1}^{0}\int _{U_{0}(R)}|\pi _{0}||\varvec{u}|\,\mathrm{d}x\,\mathrm{d}s\nonumber \\ \lesssim&\sum _{k=4}^{n}\sum _{j=0}^{k-4}\int _{-1}^{t} \int _{U_{0}(R)} \pi _{0,j} \ \varvec{u} \cdot {\Phi }_{n} \phi _{k} \nabla \psi \,\mathrm{d}x\,\mathrm{d}s\nonumber \\&+\sum _{k=4}^{n}\sum _{j=k-3}^{n}\int _{-1}^{t} \int _{U_{0}(R)} \pi _{0,j} \ \varvec{u} \cdot {\Phi }_{n} \phi _{k} \nabla \psi \,\mathrm{d}x\,\mathrm{d}s+\frac{1}{R-\rho }\int _{-1}^{0}\int _{U_{0}(R)}|\pi _{0}||\varvec{u}|\,\mathrm{d}x\,\mathrm{d}s\nonumber \\ \buildrel \hbox { def}\over =&K_{1}+K_{2}+K_{3}. \end{aligned}$$
(A.8)

Analogously with (A.4), we obtain

$$\begin{aligned} K_{1}=&\sum _{j=0}^{n-4}\sum _{k=j+4}^{n}\int _{-1}^{t} \int _{U_{0}(R)} \pi _{0,j} \ \varvec{u} \cdot {\Phi }_{n} \phi _{k} \nabla \psi \,\mathrm{d}x\,\mathrm{d}s\nonumber \\ \lesssim&\frac{1}{R-\rho }\sum _{j=0}^{n-4}\sum _{k=j+4}^{n}r_{k}^{-1}\int _{-r_{k}^2}^{0}\Vert \pi _{0,j}\Vert _{L^{\frac{3}{2}}(U_{k}(R))}\Vert \varvec{u}\Vert _{L^{3}(U_{k}(R))}\,\mathrm{d}s\nonumber \\ \lesssim&\frac{1}{R-\rho }\sum _{j=0}^{n-4}\sum _{k=j+4}^{n}r_{k}^{-\frac{1}{3}}r_{j}^{-\frac{2}{3}}\int _{-r_{k}^2}^{0}\Vert \left( \varvec{u},\varvec{b}\right) \Vert _{L^{3}(U_{j}(R))}^{3}\,\mathrm{d}s\nonumber \\ \lesssim&\frac{1}{R-\rho }\sum _{j=0}^{n-4}\sum _{k=j+4}^{n}r_{k}^{\frac{1}{6}}r_{j}^{-\frac{2}{3}}\Vert \left( \varvec{u},\varvec{b}\right) \Vert _{L^{4}\left( -r_{k}^2,0;L^{3}(U_{j}(R))\right) }^{3}\nonumber \\ \lesssim&\frac{\mathcal {E}^{\frac{1}{2}}}{R-\rho } \sum _{i=0}^{n} r_{i}^{\frac{1}{2}}\left( r_{i}^{-1} E_{i}(R)\right) . \end{aligned}$$
(A.9)

Analogously with (A.5), we get

$$\begin{aligned} K_{2}=&\sum _{k=4}^{n}\int _{-1}^{t} \int _{U_{0}(R)} {\mathscr {J}}\left( \left( \varvec{u}\otimes \varvec{u}-\varvec{b}\otimes \varvec{b}\right) \cdot \chi _{k-3}\right) \ \varvec{u} \cdot {\Phi }_{n} \phi _{k} \nabla \psi \,\mathrm{d}x\,\mathrm{d}s\nonumber \\ \lesssim&\frac{1}{R-\rho }\sum _{k=0}^{n}r_{k}^{-1}\int _{-r_{k}^2}^{0}\Vert \left( \varvec{u},\varvec{b}\right) \Vert _{L^{3}(U_{k}(R))}^3\,\mathrm{d}s\nonumber \\ \lesssim&\frac{\mathcal {E}^{\frac{1}{2}}}{R-\rho } \sum _{i=0}^{n} r_{i}^{\frac{1}{2}}\left( r_{i}^{-1} E_{i}(R)\right) . \end{aligned}$$
(A.10)

Analogously with (A.6), we have

$$\begin{aligned} K_{3}\lesssim \frac{1}{R-\rho }\int _{-1}^{0}\Vert \left( \varvec{u},\varvec{b}\right) \Vert _{L^{3}(U_{0}(R))}^3 \,\mathrm{d}s\lesssim \frac{1}{R-\rho }\mathcal {E}^{\frac{3}{2}}. \end{aligned}$$
(A.11)

Summing up (A.8), (A.9), (A.10) and (A.11), we obtain (A.7).\(\square \)

Lemma A.4

Under the assumptions of Lemma 3.1, we have

$$\begin{aligned} H\leqslant \frac{C}{(R-\rho )^{3}} \mathcal {E}^{\frac{3}{2}}. \end{aligned}$$
(A.12)

Proof

$$\begin{aligned} H=&-\sum _{k=0}^{n}\int _{-1}^{t}\int _{U_{0}(R)} \nabla \pi _{h}\cdot \varvec{u}\cdot \left( {\Phi }_{n} \phi _{k} \psi \right) \,\mathrm{d}x\,\mathrm{d}s\nonumber \\ =&\sum _{k=0}^{3}\int _{-1}^{t}\int _{U_{0}(R)} \pi _{h}\cdot \varvec{u}\cdot \nabla \left( {\Phi }_{n} \phi _{k} \psi \right) \,\mathrm{d}x\,\mathrm{d}s-\sum _{k=4}^{n}\int _{-1}^{t}\int _{U_{0}(R)} \nabla \pi _{h}\cdot \varvec{u}\cdot \left( {\Phi }_{n} \phi _{k} \psi \right) \,\mathrm{d}x\,\mathrm{d}s\nonumber \\ \buildrel \hbox { def}\over =&H_{1}+H_{2}. \end{aligned}$$
(A.13)

Applying (2.1), Hölder’s inequality and the fact that

$$\begin{aligned} \Vert \pi _{h}\Vert _{L^{\frac{3}{2}}({\mathbb {R}}^3)}\leqslant&\Vert \pi \Vert _{L^{\frac{3}{2}}({\mathbb {R}}^3)}+\Vert \pi _{0}\Vert _{L^{\frac{3}{2}}({\mathbb {R}}^3)}\lesssim \Vert \left( \varvec{u},\varvec{b}\right) \Vert _{L^{3}({\mathbb {R}}^3)}^2, \end{aligned}$$
(A.14)

we obtain

$$\begin{aligned} H_{1}\lesssim \frac{1}{R-\rho }\int _{-1}^{t}\int _{U_{0}(R)}|\pi _{h}||\varvec{u}|\,\mathrm{d}x\,\mathrm{d}s\lesssim \frac{1}{R-\rho }\Vert \pi _{h}\Vert _{L^{\frac{3}{2}}\left( Q_{0}(1)\right) }\Vert \varvec{u}\Vert _{L^{3}\left( Q_{0}(1)\right) } \lesssim \frac{1}{R-\rho } \mathcal {E}^{\frac{3}{2}}. \end{aligned}$$
(A.15)

Moreover,

$$\begin{aligned} H_{2}\lesssim & {} \sum _{k=4}^{n} r_{k}^{-1} \int _{Q_{k}(\frac{R+\rho }{2}) }|\nabla \pi _{h}| \cdot |\varvec{u}|\,\mathrm{d}x\,\mathrm{d}s\nonumber \\\lesssim & {} \sum _{k=4}^{n} r_{k}^{-1}\left\| \nabla \pi _{h}\right\| _{L^{\frac{3}{2}}\left( Q_{k}(\frac{R+\rho }{2}) \right) }\Vert \varvec{u}\Vert _{L^{3}\left( Q_{k}(R) \right) }\nonumber \\\lesssim & {} \sum _{k=4}^{n} r_{k}^{-\frac{1}{3}}\left\| \nabla \pi _{h}\right\| _{L^{\frac{3}{2}}\left( -r_{k}^{2}, 0 ; L^{\infty }\left( U_{k}(\frac{R+\rho }{2}) \right) \right) }\Vert \varvec{u}\Vert _{L^{3}\left( Q_{k}(R) \right) }. \end{aligned}$$
(A.16)

For any \(x^{*} \in U_{k}(\frac{R+\rho }{2})\), we have \( B\left( x^*, \frac{R-\rho }{4}\right) \subset U_{1}(R)\) due to \(k \geqslant 4\) and \(|R-\rho | \leqslant \frac{1}{2}.\) Since \(\pi _{h}\) is harmonic in \(U_{1}(R),\) using the mean value property, we have

$$\begin{aligned} \left| \nabla \pi _{h}\right| \left( x^{*}\right) \lesssim \frac{1}{|R-\rho |^{4}} \int _{B\left( x^*, \frac{R-\rho }{4}\right) }|\pi _{h}|\,\mathrm{d}x\lesssim \frac{1}{(R-\rho )^{3}}\left\| \pi _{h}\right\| _{L^ \frac{3}{2}\left( U_{1}(R) \right) }. \end{aligned}$$

Hence,

$$\begin{aligned} H_{2}\lesssim&\frac{1}{(R-\rho )^{3}} \sum _{k=4}^{n} r_{k}^{-\frac{1}{3}}\left\| \pi _{h}\right\| _{L^{\frac{3}{2}}\left( -r_{k}^{2}, 0 ; L^{\frac{3}{2}}\left( U_{1}(R)\right) \right) }\Vert \varvec{u}\Vert _{L^{3}\left( Q_{k}(R)\right) } \nonumber \\ \lesssim&\frac{1}{(R-\rho )^{3}} \sum _{k=4}^{n} r_{k}^{\frac{1}{6}}\ \Vert \left( \varvec{u},\varvec{b}\right) \Vert _{L^{4}\left( -r_{k}^{2}, 0 ; L^{3}\left( {\mathbb {R}}^3\right) \right) }^{3}\nonumber \\ \lesssim&\frac{1}{(R-\rho )^{3}}\ \mathcal {E}^{\frac{3}{2}}. \end{aligned}$$
(A.17)

Summing up (A.13), (A.15) and (A.17), we get (A.12).\(\square \)

Lemma A.5

([24], Lemma A.3) For any

$$\begin{aligned} 1 \leqslant p_*<p=\frac{2q}{q-3}, \quad 3<q<+\infty , \end{aligned}$$

we have

$$\begin{aligned} \sum _{k=0}^{+\infty } r_{k}^{1-\frac{2}{p_*}-\frac{3}{q}}\left( \int _{-r_{k}^{2}}^{0}\left\| f(\cdot , s)\right\| _{L^q(B(2))}^{p_*} ~ds\right) ^{\frac{1}{p_*}} \leqslant C\left\| f \right\| _{L^{p, 1}\left( -1,0;L^{q}(B(2))\right) }. \end{aligned}$$

For the sake of simplicity, we define

$$\begin{aligned}&D(\pi ,z_{0},r)=r^{-2}\int _{Q(z_{0},r)}\left| \pi \right| ^{\frac{3}{2}}\,\mathrm{d}x\,\mathrm{d}t,\ F(\varvec{u},\varvec{b},z_{0},r)=r^{-2}\int _{Q(z_{0},r)}|\varvec{u}|^3+|\varvec{b}|^3\,\mathrm{d}x\,\mathrm{d}t, \end{aligned}$$
(A.18)
$$\begin{aligned}&D(\pi ,r)\buildrel \hbox { def}\over =D(\pi ,(0,0),r), \ F(\varvec{u},\varvec{b},r)\buildrel \hbox { def}\over =C(\varvec{u},\varvec{b},(0,0),r). \end{aligned}$$
(A.19)

Lemma A.6

Let \(\pi \in L^{\frac{3}{2}}(Q(1))\) solve \(\varDelta \pi =\nabla \cdot \nabla \cdot \left( \varvec{u}\otimes \varvec{u}-\varvec{b}\otimes \varvec{b}\right) \) in the sense of distributions. If there exists a constant \(K_{0}\) such that for all \(0< r \leqslant R\leqslant 1\),

$$\begin{aligned} F(\varvec{u},\varvec{b},r)\leqslant K_{0}, \end{aligned}$$
(A.20)

then for some \(\alpha >0\) and all \(0<r \leqslant R\),

$$\begin{aligned} D(\pi ,r) \leqslant C \left( \frac{r}{R}\right) ^{\alpha }\cdot D(\pi ,R)+C K_{0}. \end{aligned}$$
(A.21)

Proof

We claim that for \(0<2r< \rho \leqslant R\),

$$\begin{aligned} D(\pi ,r)\le C_{2}\left( \frac{r}{\rho }\right) D(\pi ,\rho )+C_{2}\left( \frac{\rho }{r}\right) ^2 F(\varvec{u},\varvec{b},\rho ). \end{aligned}$$
(A.22)

Actually, we write \(\pi =\pi _{0}+\pi _{h}\), where \(\pi _{0}={\mathscr {J}}\left( \left( \varvec{u}\otimes \varvec{u}-\varvec{b}\otimes \varvec{b}\right) \cdot \chi _{B(\rho )}\right) \) and

$$\begin{aligned} D(\pi _{0},r)\lesssim r^{-2}\Vert \varvec{u}\otimes \varvec{u}-\varvec{b}\otimes \varvec{b}\Vert _{L^{\frac{3}{2}}(Q(\rho ))}^\frac{3}{2}\lesssim \left( \frac{\rho }{r}\right) ^2 F(\varvec{u},\varvec{b},\rho ). \end{aligned}$$
(A.23)

\(\pi _{h}\) is harmonic in \(B(\rho )\) and the mean value property of \(\pi _{h}\) implies that

$$\begin{aligned} D(\pi _{h},r)\lesssim r \int _{-r^2}^{0}\Vert \pi _{h}\Vert _{L^{\infty }(B(r))}^{\frac{3}{2}}\,\mathrm{d}t\lesssim \left( \frac{r}{\rho }\right) D(\pi _{h},\rho )\lesssim \left( \frac{r}{\rho }\right) \left( D(\pi ,\rho )+D(\pi _{0},\rho )\right) . \end{aligned}$$
(A.24)

Summing up (A.23) and (A.24), we have (A.22).

Let \(\theta \in (0,\frac{1}{2})\). By (A.20) and (A.22), we obtain that for \(0<r\leqslant R\),

$$\begin{aligned} D(\pi ,\theta r)\leqslant C_{2}\cdot \theta \ D(\pi ,r)+C_{2}K_{0}\ \theta ^{-2}. \end{aligned}$$
(A.25)

We choose \(\theta \) such that \(C_{2}\cdot \theta = \frac{1}{2}\). For \(\theta R < r\le R\), we get

$$\begin{aligned} D(\pi ,r)\leqslant \theta ^{-2} R^{-2}\int _{Q(R)}|\pi |^{\frac{3}{2}}\,\mathrm{d}x\,\mathrm{d}t. \end{aligned}$$
(A.26)

This together with a standard iteration yields (A.21) with \(\alpha =-\frac{\ln 2}{\ln \theta }>0\). \(\square \)

Lemma A.7

([23], Theorem 1.1) There exists an absolute constant \(\varepsilon _{0}>0\) with the following property. If \((\varvec{u},\varvec{b},\pi )\) is a suitable weak solution to the MHD equations in Q(1) satisfying that for some \(0<R\leqslant 1\), \(Q(z_{0},R)\subseteq Q(1)\) and

$$\begin{aligned} R^{-2} \int _{Q(z_{0},R)}\left( |\varvec{u}|^{3}+|\varvec{b}|^{3}+|\pi |^{\frac{3}{2}}\right) \,\mathrm{d}x\,\mathrm{d}t<\varepsilon _{0}, \end{aligned}$$
(A.27)

then the solution is regular at \(z_{0}=(x_{0},t_{0})\).

Lemma A.8

(stability of singularities) Let \(\left( \varvec{u}_{k},\varvec{b}_{k}, \pi _{k}\right) \) be a sequence of the suitable weak solutions to the MHD equations (1.1) in Q(1) such that \((\varvec{u}_{k},\varvec{b}_{k}) \rightarrow (\varvec{v},\varvec{B})\) in \(L^{3}(Q(1))\), \(\pi _{k} \rightharpoonup \varPi \) in \(L^{\frac{3}{2}}(Q(1))\). Assume \((\varvec{u}_{k},\varvec{b}_{k})\) is singular at \(z_{k}=(x_{k},t_{k})\), \(z_{k}\rightarrow (0,0)\) as \(k\rightarrow \infty \). Then \((\varvec{v},\varvec{B})\) is singular at (0, 0).

Proof

The proof is similar with [19, Lemma 2.1]. If \((\varvec{v},\varvec{B})\) is regular at (0, 0), then there exists \(\rho _{0}>0\) and for all \(0<r<\rho _{0}\),

$$\begin{aligned} r^{-2}\int _{Q(r)}|\varvec{v}|^3+|\varvec{B}|^3\,\mathrm{d}x\,\mathrm{d}t\leqslant C \ r^3. \end{aligned}$$
(A.28)

Since \((\varvec{u}_{k},\varvec{b}_{k})\) is singular at \(z_{k}\), by (A.18) and Lemma A.7, we obtain that for all \(0<r< \frac{1}{2}\),

$$\begin{aligned} F(\varvec{u}_{k},\varvec{b}_{k},z_{k},r)+D(\pi _{k},z_{k},r)\geqslant \varepsilon _{0}. \end{aligned}$$
(A.29)

For sufficient large \(N=N(r)\) and all \(k\geqslant N\), we get that \(Q(z_{k},r)\in Q(2r)\) and

$$\begin{aligned} F(\varvec{u}_{k},\varvec{b}_{k},2r)+D(\pi _{k},2r)\geqslant \frac{\varepsilon _{0}}{4}. \end{aligned}$$
(A.30)

Denote \(\tilde{F}(r)=\underset{k\rightarrow \infty }{\limsup }\ F(\varvec{u}_{k},\varvec{b}_{k},r)\) and \(\tilde{D}(r)=\underset{k\rightarrow \infty }{\limsup }\ D(\pi _{k},r)\). For all \(0<r< 1\), we have

$$\begin{aligned} \tilde{F}(r)+\tilde{D}(r)\geqslant \frac{\varepsilon _{0}}{4}. \end{aligned}$$
(A.31)

By (A.28), we obtain that for all \(0<r< \rho <\rho _{0}\),

$$\begin{aligned} \tilde{F}(r)=F(\varvec{v},\varvec{B},r)\leqslant Cr^3\leqslant C \rho ^3. \end{aligned}$$
(A.32)

Applying an analogous argument in Lemma A.6, we get that for all r with \(0<r< \rho \),

$$\begin{aligned} \tilde{D}(r) \leqslant C \left( \frac{r}{\rho }\right) ^{\alpha }\cdot \tilde{D}(\rho )+C \rho ^3. \end{aligned}$$
(A.33)

Accordingly, we have for all \(0<r< \rho <\rho _{0}\),

$$\begin{aligned} C_{3} \left( \frac{r}{\rho }\right) ^{\alpha }\cdot \tilde{D}(\rho )+C_{3} \rho ^3 \geqslant \frac{\varepsilon _{0}}{4}, \end{aligned}$$
(A.34)

where the constant \(C_{3}\) is independent of r and \(\rho \). It leads to a contradiction if we let \(r\rightarrow 0\) and then \(\rho \rightarrow 0\). The proof is completed. \(\square \)

Lemma A.9

([25], Theorem 1.1) There is an absolute number \(\varepsilon _{1}>0\) with the following property. If \((\varvec{u},\varvec{b},\pi )\) is a suitable weak solution of (1.1) in Q(1) satisfying that for some \(0<R_{0} < 1\) and all \(0<r<R_{0}\),

$$\begin{aligned} r^{-2} \int _{Q(r)}|\varvec{u}|^{3}\,\mathrm{d}x\,\mathrm{d}t< \varepsilon _{1}, \end{aligned}$$
(A.35)

then the solution \((\varvec{u},\varvec{b})\) is regular at (0, 0).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Qian, C. & Zhang, T. Serrin–type regularity criteria for the 3D MHD equations via one velocity component and one magnetic component. Calc. Var. 61, 89 (2022). https://doi.org/10.1007/s00526-022-02208-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-022-02208-5

Mathematics Subject Classification

Navigation