Skip to main content
Log in

Curve-like concentration for Bose-Einstein condensates

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

This article is devoted to studying the model of Bose-Einstein condensates (BECs) with attractive interactions, and it can be described by Gross-Pitaevskii energy functional with \(L^{2}\)–constraint for the mass. Recently, the solutions of this model concentrated at several points have been widely considered. However, it does not seem to have the result on solutions concentrating at a high dimensional subset. In this paper, we show that the existence of radial solutions of the model concentrating on spheres under suitable conditions by using modified finite dimensional reduction and blow-up analysis based on Pohozaev identity. Also we would like to point out that this concentration phenomena is quite different from those of classical nonlinear Schrödinger equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, M., Ensher, J., Matthews, M., Wieman, C., Cornell, E.: Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995)

    Article  Google Scholar 

  2. Bao, W., Cai, Y.: Mathmatical theory and numerical methods for Bose-Einstein condensation. Kinetic Related Mod. 6, 1–135 (2013)

    Article  Google Scholar 

  3. Bartsch, T., Peng, S.: Semiclassical symmetric Schrödinger equations: existence of solutions concentrating simultaneously on several spheres. Z. Angew. Math. Phys. 58, 778–804 (2007)

    Article  MathSciNet  Google Scholar 

  4. Bartsch, T., Peng, S.: Existence of solutions concentrating on higher dimensional subsets for singularly perturbed elliptic equations I. Indiana Univ. Math. J. 57, 1599–1632 (2008)

    Article  MathSciNet  Google Scholar 

  5. Bartsch, T., Peng, S.: Solutions concentrating on higher dimensional subsets for singularly perturbed elliptic equations II. J. Differ. Equ. 248, 2746–2767 (2010)

    Article  MathSciNet  Google Scholar 

  6. Bloch, I., Dalibard, J., Zwerger, W.: Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885 (2008)

    Article  Google Scholar 

  7. Byeon, J., Wang, Z.: Spherical semiclassical states of a critical frequency for Schrodinger equations with decaying potentials. J. Eur. Math. Soc. 8, 217–228 (2006)

    Article  MathSciNet  Google Scholar 

  8. Cao, D., Peng, S., Yan, S.: Singularly perturbed methods for nonlinear elliptic problems. Cambridge University Press, (2021)

  9. Cornell, E., Wieman, C.: Nobel lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments. Rev. Mod. Phys. 74, 875–893 (2002)

    Article  Google Scholar 

  10. Dancer, E., Yan, S.: A new type of concentration solutions for a singularly perturbed elliptic problem. Trans. Amer. Math. Soc. 359, 1765–1790 (2007)

    Article  MathSciNet  Google Scholar 

  11. Davis, K., Mewes, M., Andrews, M., van Druten, N., Durfee, D., Kurn, D., Ketterle, W.: Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995)

    Article  Google Scholar 

  12. Dror, N., Malomed, B.A.: Stability of two-dimensional gap solitons in periodic potentials: beyond the fundamental modes. Phys. Rev. E. 87, 063203 (2013)

    Article  Google Scholar 

  13. Efremidis, N.K., Sears, S., Christodoulides, D.N., Fleischer, J.W., Segev, M.: Discrete solitons in photorefractive optically induced photonic lattices. Phys. Rev. E. 66, 046602 (2002)

    Article  Google Scholar 

  14. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin (1983)

    MATH  Google Scholar 

  15. Gross, E.: Structure of a quantized vortex in boson systems. Nuovo Cimento 20, 454–466 (1961)

    Article  MathSciNet  Google Scholar 

  16. Guo, Y., Seiringer, R.: On the mass concentration for Bose-Einstein condensates with attractive interactions. Lett. Math. Phys. 104, 141–156 (2014)

    Article  MathSciNet  Google Scholar 

  17. Guo, Y., Wang, Z., Zeng, X., Zhou, H.: Properties of ground states of attractive Gross-Pitaevskii equations with multi-well potentials. Nonlinearity 31, 957–979 (2018)

    Article  MathSciNet  Google Scholar 

  18. Guo, Y., Zeng, X., Zhou, H.: Energy estimates and symmetry breaking in attractive Bose-Einstein condensates with ring-shaped potentials. Ann. Inst. H. Poincaré Anal. Non Linéaire 33, 809–828 (2016)

  19. Lederer, F., Stegeman, G.I., Christodoulides, D.N., Assanto, G., Segev, M., Silberberg, Y.: Discrete solitons in optics. Phys. Rep. 463, 1–126 (2008)

    Article  Google Scholar 

  20. Lieb, E., Loss, M.: Analysis, second ed., in: Graduate Studies in Mathematics, vol. 14, American Mathematical Society, Providence, RI, (2001)

  21. Lieb, E., Seiringer, R., Yngvason, J.: A rigorous derivation of the Gross-Pitaevskii energy functional for a two-dimensional Bose gas. Commun. Math. Phys. 224, 17–31 (2001)

    Article  MathSciNet  Google Scholar 

  22. Luo, P., Peng, S., Wei, J., Yan, S.: Excited states of Bose-Einstein condensates with degenerate attractive interactions. Calc. Var. Partial Differ. Equ. 60, 155 (2021)

    Article  MathSciNet  Google Scholar 

  23. Morsch, O., Oberthaler, M.: Dynamics of BoseCEinstein condensates in optical lattices. Rev. Modern Phys. 78, 179–215 (2006)

    Article  Google Scholar 

  24. Musso, M., Yang, J.: Curve-like concentration layers for a singularly perturbed nonlinear problem with critical exponents. Commun. Partial Differ. Equ. 39, 1048–1103 (2014)

    Article  MathSciNet  Google Scholar 

  25. Ketterle, W.: Nobel lecture: When atoms behave as waves: Bose-Einstein condensation and the atom laser. Rev. Mod. Phys. 74, 1131–1151 (2002)

    Article  Google Scholar 

  26. Pitaevskii, L.: Vortex lines in an imperfect Bose gas. Sov. Phys. JETP 13, 451–454 (1961)

    MathSciNet  Google Scholar 

  27. Szameit, A., Blömer, D., Burghoff, J., Schreiber, T., Pertsch, T., Nolte, S., Tnnermann, A.: Discrete nonlinear localiza-tion in femtosecond laser written waveguides in fused silica. Opt. Express 26, 10552–10557 (2005)

    Article  Google Scholar 

  28. Wei, S., Xu, B., Yang, J.: On Ambrosetti-Malchiodi-Ni conjecture on two-dimensional smooth bounded domains. Calc. Var. PDEs 57(3), 87 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Guo was supported by National Natural Science Foundation of China (No.11771469). Tian was supported by National Natural Science Foundation of China (No.11871387,12071364) and the Fundamental Research Funds for the Central Universities(WUT: 2020IA003). Zhou was supported by National Natural Science Foundation of China (No.12171183).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuying Tian.

Additional information

Communicated by P. H. Rabinowitz.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Q., Tian, S. & Zhou, Y. Curve-like concentration for Bose-Einstein condensates. Calc. Var. 61, 63 (2022). https://doi.org/10.1007/s00526-021-02171-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-02171-7

Mathematics Subject Classification

Navigation