Skip to main content
Log in

Normalized multi-bump solutions of nonlinear Schrödinger equations via variational approach

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We investigate the existence and concentration behavior of the multi-bump solutions for the nonlinear Schrödinger equation \(-\hbar ^2\Delta v-K(x)|v|^{2\sigma }v=-\lambda v\) with an \(L^2\)-constraint in the \(L^2\)-subcritical case \(\sigma \in (0,\frac{2}{N})\) and the \(L^2\)-supercritical case \(\sigma \in (\frac{2}{N},\frac{2^*}{N})\), where \(N\ge 1\) is the dimension, \(\hbar >0\) is a small parameter and \(K>0\) possesses several local maximum points. By variational approach, we construct normalized multi-bump solutions concentrating at a finite set of local maximum points of K. The construction combines the variational gluing arguments of Séré (Math Z 209(1):27–42, 1992) and Coti-Zelati and Rabinowitz (J Am Math Soc 4(4):693–727, 1991, Commun Pure Appl Math 45(10):1217–1269, 1992) and a penalization technique which is developed in order not to solve local minimization problems on the \(L^2\) sphere. Our approach is robust without imposing any nondegeneracy assumptions on K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ackermans, N., Weth, T.: Unstable normalized standing waves for the space periodic NLS. Anal. PDE 12, 1177–1213 (2019)

    Article  MathSciNet  Google Scholar 

  2. Ackermann, N., Weth, T.: Multibump solutions of nonlinear periodic Schrödinger equations in a degenerate setting. Commun. Contemp. Math. 7(3), 269–298 (2005)

    Article  MathSciNet  Google Scholar 

  3. Alama, S., Li, Y.Y.: On ‘multibump’ bound states for certain semilinear elliptic equations. Indiana Univ. Math. J. 41(4), 983–1026 (1992)

    Article  MathSciNet  Google Scholar 

  4. Ambrosetti, A., Badiale, M., Cingolani, S.: Semiclassical states of nonlinear Schrödinger equations. Arch. Rational Mech. Anal. 140(3), 285–300 (1997)

    Article  MathSciNet  Google Scholar 

  5. Bartsch, T., de Valeriola, S.: Normalized solutions of nonlinear Schroödinger equations. Arch. Math. (Basel) 100(1), 75–83 (2013)

    Article  MathSciNet  Google Scholar 

  6. Bartsch, T., Soave, N.: A natural constraint approach to normalized solutions of nonlinear Schrodinger equations and systems. J. Funct. Anal. 27(12), 4998–5037 (2017)

    Article  MathSciNet  Google Scholar 

  7. Byeon, J., Jeanjean, L.: Multi-peak standing waves for nonlinear Schrödinger equations with a general nonlinearity. Discrete Contin. Dyn. Syst. 19(2), 255–269 (2007)

    Article  MathSciNet  Google Scholar 

  8. Byeon, J., Tanaka, K.: Semiclassical standing waves with clustering peaks for nonlinear Schrödinger equations. Mem. Amer. Math. Soc. 229, 1076 (2014)

    MATH  Google Scholar 

  9. Byeon, J., Wang, Z.-Q.: Standing waves with a critical frequency for nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 165(4), 295–316 (2002)

    Article  MathSciNet  Google Scholar 

  10. Byeon, J., Wang, Z.-Q.: Standing waves with a critical frequency for nonlinear Schrödinger equations II. Calc. Var. Partial Differ. Equ. 18(2), 207–219 (2003)

    Article  Google Scholar 

  11. Cazenave, T.: Stable solutions of the logarithmic Schrödinger equation. Nonlinear Anal. 7, 1127–1140 (1983)

    Article  MathSciNet  Google Scholar 

  12. Cazenave, T.: Semilinear Schrödinger equations, New York University, Courant Institute of Mathematical Sciences. New York; American Mathematical Society, Providence, RI (2003)

  13. Cazenave, T., Lions, P.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85, 549–561 (1982)

    Article  Google Scholar 

  14. Chen, S., Wang, Z.-Q.: Localized nodal solutions of higher topological type for semiclassical nonlinear Schrödinger equations. Calc. Var. Partial Differ. Equ. 56(1), 1 (2017)

    Article  Google Scholar 

  15. Cingolani, S., Jeanjean, L., Tanaka, K.: Multiplicity of positive solutions of nonlinear Schröodinger equations concentrating at a potential well. Calc. Var. Partial Differ. Equ. 53(1–2), 413–439 (2015)

    Article  Google Scholar 

  16. Coti Zelati, V., Rabinowitz, P.H.: Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials. J. Am. Math. Soc. 4(4), 693–727 (1991)

    Article  MathSciNet  Google Scholar 

  17. Coti Zelati, V., Rabinowitz, P.H.: Homoclinic type solutions for a semilinear elliptic PDE on \({\mathbb{R}}^n\). Commun. Pure Appl. Math. 45(10), 1217–1269 (1992)

    Article  Google Scholar 

  18. del Pino, M., Felmer, P.: Local Mountain Pass for semilinear elliptic problems in unbounded domains. Calc. Var. Partial Differ. Equ. 4, 121–137 (1996)

    Article  Google Scholar 

  19. del Pino, M., Felmer, P.: Multipeak bound states of nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 15, 127–149 (1998)

    Article  MathSciNet  Google Scholar 

  20. Esteban, M.J., Lions, P.-L.: Existence and nonexistence results for semilinear elliptic problems in unbounded domains. Proc. Roy. Soc. Edinburgh Sect. A. 93, 1–14 (1982)

    Article  MathSciNet  Google Scholar 

  21. Floer, A., Weinstein, A.: Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal. 69(3), 397–408 (1986)

    Article  MathSciNet  Google Scholar 

  22. Gui, C.: Existence of multi-bumb solutions for nonlinear Schödinger equations via variational method. Comm. Part. Diff. Eqs. 21, 787–820 (1996)

    Article  Google Scholar 

  23. Ikoma, N., Tanaka, K.: A note on deformation argument for \(L^2\) normalized solutions of nonlinear Schrödinger equations and systems. Adv. Differ. Equ. 24(11–12), 609–646 (2019)

    MATH  Google Scholar 

  24. Ikoma, N., Miyamoto, Y.: Stable standing waves of nonlinear Schrödinger equations with potentials and general nonlinearities. Calc. Var. Partial Differ. Equ. 59(2), 48 (2020)

    Article  Google Scholar 

  25. Jeanjean, L.: Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal. 28(10), 1633–1659 (1997)

    Article  MathSciNet  Google Scholar 

  26. Jeanjean, L., Lu, S.-S.: Nonradial normalized solutions for nonlinear scalar field equations. Nonlinearity 32(12), 4942–4966 (2019)

    Article  MathSciNet  Google Scholar 

  27. Jeanjean, L., Lu, S.-S.: A mass supercritical problem revisited. Calc. Var. Partial Differ. Equ. 59(5), 174 (2020)

    Article  MathSciNet  Google Scholar 

  28. Lions, P. L.: The concentration-compactness principle in the calculus of variations. The locally compact case. II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1(4), 223–283 (1984)

  29. Liu, Z., Wang, Z.-Q.: Multi-bump type nodal solutions having a prescribed number of nodal domains: I. Ann. Inst. H. Poincaré Anal. Non Linéaire, 22(5), 579–608 (2005).

  30. Liu, Z., Wang, Z.-Q.: Multi-bump type nodal solutions having a prescribed number of nodal domains: II. Ann. Inst. H. Poincaré Anal. Non Linéaire, 22(5), 609–631 (2005)

  31. Montecchiari, P., Rabinowitz, P.H.: A variant of the mountain pass theorem and variational gluing. Milan J. Math. 88(2), 347–372 (2020)

    Article  MathSciNet  Google Scholar 

  32. Noris, B., Tavares, H., Verzini, G.: Existence and orbital stability of the ground states with prescribed mass for the \(L^2\)-critical and supercritical NLS on bounded domains. Anal. PDE 7(8), 1807–1838 (2014)

    Article  MathSciNet  Google Scholar 

  33. Oh, Y.-G.: On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential. Comm. Math. Phys. 131(2), 223–253 (1990)

    Article  MathSciNet  Google Scholar 

  34. Pellacci, B., Pistoia, A., Vaira, G., Verzini, G.: Normalized concentrating solutions to nonlinear elliptic problems. J. Differ. Equ. 275, 882–919 (2021)

    Article  MathSciNet  Google Scholar 

  35. Pohožaev, S.T.: On the eigenfunctions of the equation \(\Delta u+\lambda f(u)=0\). Dokl. Akad. Nauk SSSR 165, 36–39 (1965)

    MathSciNet  Google Scholar 

  36. Rabinowitz, P.H.: Minimax methods in critical point theory with applications to differential equations, In: CBMS regional conference series in mathematics, vol. 65. American Mathematical Society, Providence (1986)

  37. Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43(2), 270–292 (1992)

    Article  MathSciNet  Google Scholar 

  38. Séré, E.: Existence of infinitely many homoclinic orbits in Hamiltonian systems. Math. Z. 209(1), 27–42 (1992)

    Article  MathSciNet  Google Scholar 

  39. Shibata, M.: Stable standing waves of nonlinear Schrödinger equations with a general nonlinear term. Manuscr. Math. 143, 221–237 (2014)

    Article  Google Scholar 

  40. Soave, N.: Normalized ground states for the NLS equation with combined nonlinearities. J. Differ. Equ. 269(9), 6941–6987 (2020)

    Article  MathSciNet  Google Scholar 

  41. Soave, N.: Normalized ground states for the NLS equation with combined nonlinearities: The Sobolev critical case. J. Funct. Anal. 279(6), 108610 (2020)

    Article  MathSciNet  Google Scholar 

  42. Tanaka, K., Zhang, C.: Multi-bump solutions for logarithmic Schröinger equations. Calc. Var. Partial Differ. Equ. 56, 33 (2017)

    Article  Google Scholar 

  43. Wang, X.: On concentration of positive bound states of nonlinear Schrödinger equations. Comm. Math. Phys. 153(2), 229–244 (1993)

    Article  MathSciNet  Google Scholar 

  44. Willem, M.: Minimax theorems. Progress in nonlinear differential equations and their applications, vol. 24. Birkhäuser, Boston, MA (1996)

Download references

Acknowledgements

The research was supported by NSFC-12001044, NSFC-11901582 and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Zhang.

Additional information

Communicated by P. H. Rabinowitz.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Zhang, X. Normalized multi-bump solutions of nonlinear Schrödinger equations via variational approach. Calc. Var. 61, 57 (2022). https://doi.org/10.1007/s00526-021-02166-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-02166-4

Mathematics Subject Classification

Navigation