Skip to main content
Log in

The Dirichlet-to-Neumann operator associated with the 1-Laplacian and evolution problems

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we present first insights about the Dirichlet-to-Neumann operator in \(L^{1}\) associated with the 1-Laplace operator or total variational flow operator. This operator is the main object, for example, in studying inverse problems related to image processing, but also admits an important relation to geometry. We show that this operator can be represented by the sub-differential in \(L^1\times L^{\infty }\) of a convex, homogeneous, and continuous functional on \(L^{1}\). This is quite surprising since it implies a type of stability or compactness result even though the singular Dirichlet problem governed by the 1-Laplace operator might have infinitely many weak solutions (if the given boundary data is not continuous). As an application, we obtain well-posedness and long-time stability of solutions of a singular coupled elliptic-parabolic initial boundary-value problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. The Clarendon Press, New York (2000)

    MATH  Google Scholar 

  2. Ammar, K., Andreu, F., Toledo, J.: Quasi-linear elliptic problems in \(L^1\) with non homogeneous boundary conditions. Rend. Mat. Appl. 26(7), 291–314 (2006)

    MathSciNet  MATH  Google Scholar 

  3. Andreu-Vaillo, F., Caselles, V., Mazón, J.M.: Parabolic quasilinear equations minimizing linear growth functionals. Progress in Mathematics, vol. 223. Birkhäuser Verlag, Basel (2004)

  4. Anzellotti, G.: Pairings between measures and bounded functions and compensated compactness. Ann. Mat. Pura Appl. 135(4), 293–318 (1984)

    MathSciNet  MATH  Google Scholar 

  5. Arendt, W., Batty, C.J.K., Hieber, M., Neubrander, F.: Vector-valued Laplace transforms and Cauchy problems. Monographs in Mathematics, vol. 96, 2nd edn. Birkhäuser/Springer Basel AG, Basel (2011)

  6. Arendt, W., Hauer, D.: Maximal \(L^2\)-regularity in nonlinear gradient systems and perturbations of sublinear growth. Pure Appl. Anal. 2, 23–34 (2020)

    Article  MathSciNet  Google Scholar 

  7. Barbu, V.: Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer Monographs in Mathematics, Springer, New York (2010)

    Book  Google Scholar 

  8. Bénilan, P., Crandall, M.G., Regularizing effects of homogeneous evolution equations. In: Contributions to Analysis and Geometry. Baltimore, Md. Press, Baltimore, Md. 1981, Johns Hopkins Univ, pp. 23–39 (1980)

  9. Bénilan, P., Crandall, M.G., Completely accretive operators, in Semigroup theory and evolution equations (Delft,: vol. 135 of Lecture Notes in Pure and Appl. Math. Dekker, New York 1991, 41–75 (1989)

  10. Bénilan, P., Crandall, M.G., Pazy, A.: Evolution problems governed by accretive operators (1994)

  11. Bennett, C., Sharpley, R.: Interpolation of operators. Pure and Applied Mathematics, vol. 129. Academic Press Inc, Boston, MA (1988)

  12. Bombieri, E., De Giorgi, E., Giusti, E.: Minimal cones and the Bernstein problem. Invent. Math. 7, 243–268 (1969)

    Article  MathSciNet  Google Scholar 

  13. Brander, T.: Calderón problem for the p-Laplacian: first order derivative of conductivity on the boundary. Proc. Am. Math. Soc. 144, 177–189 (2016)

    Article  Google Scholar 

  14. Brézis, H. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973. North-Holland Mathematics Studies, No. 5. Notas de Matemática (50)

  15. Bruck, R.E., Jr.: Asymptotic convergence of nonlinear contraction semigroups in Hilbert space. J. Funct. Anal. 18, 15–26 (1975)

    Article  MathSciNet  Google Scholar 

  16. Calderón, A.-P.: On an inverse boundary value problem, in Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro,: Soc. Brasil. Mat. Rio de Janeiro 1980, 65–73 (1980)

    Google Scholar 

  17. Chill, R., Hauer, D.: Nonlinear semigroups generated by j-elliptic functionals. J. Math. Pures Appl. 105(9), 415–450 (2016)

    Article  MathSciNet  Google Scholar 

  18. Cianchi, A., Ferone, V., Nitsch, C., Trombetti, C.: Balls minimize trace constants in BV. J. Reine Angew. Math. 725, 41–61 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Coulhon, T., Hauer, D.: Functional inequalities and regularizing effect of nonlinear semigroups - Theory and Application. SMAI - Mathématiques et Applications (2021)

  20. Dautray, R., Lions, J.-L.: Mathematical analysis and numerical methods for science and technology. Vol. 1, Springer-Verlag, Berlin,: Physical origins and classical methods, With the collaboration of Philippe Bénilan, Michel Cessenat, André Gervat, Alain Kavenoky and Hélène Lanchon. Translated from the French by Ian N, Sneddon, With a preface by Jean Teillac (1990)

  21. Díaz, J.I., Jiménez, R.F.: Boundary behaviour of solutions of the Signorini problem. I. The elliptic case, Boll. Un. Mat. Ital. B. 2(7), 127–139 (1988)

  22. Dos Santos, M.: Characteristic functions on the boundary of a planar domain need not be traces of least gradient functions. Confluentes Math. 9, 65–93 (2017)

    Article  MathSciNet  Google Scholar 

  23. Evans, L.C., Gariepy, R.F.: Measure theory and fine properties of functions, Studies in Advanced Mathematics. CRC Press, Boca Raton, FL (1992)

  24. Giga, Y., Nakayashiki, R., Rybka, P., Shirakawa, K.: On boundary detachment phenomena for the total variation flow with dynamic boundary conditions. J. Differ. Equ. 12(269), 10587–10629 (2020)

  25. Górny, W.: Existence of minimisers in the least gradient problem for general boundary data. Indiana Univ. Math. J. 3(70), 1003–1037 (2021)

  26. Górny, W.: (Non)uniqueness of minimizers in the least gradient problem. J. Math. Anal. Appl. 468, 913–938 (2018)

    Article  MathSciNet  Google Scholar 

  27. Górny, W.: Planar least gradient problem: existence, regularity and anisotropic case. Calc. Var. Partial Differ. Equ. 57, 27–98 (2018)

    Article  MathSciNet  Google Scholar 

  28. Górny, W., Rybka, P., Sabra, A.: Special cases of the planar least gradient problem. Nonlinear Anal. 151, 66–95 (2017)

    Article  MathSciNet  Google Scholar 

  29. Hauer, D.: The p-Dirichlet-to-Neumann operator with applications to elliptic and parabolic problems. J. Differ. Equ. 259, 3615–3655 (2015)

    Article  MathSciNet  Google Scholar 

  30. Hauer, D.: Regularizing effect of homogeneous evolution equations with perturbation. Nonlinear Anal. 206, 112245 (2021)

  31. Hauer, D., Mazón, J.M.: Regularizing effects of homogeneous evolution equations: the case of homogeneity order zero. J. Evol. Equ. 19, 965–996 (2019)

    Article  MathSciNet  Google Scholar 

  32. Jerrard, R.L., Moradifam, A., Nachman, A.I.: Existence and uniqueness of minimizers of general least gradient problems. J. Reine Angew. Math. 734, 71–97 (2018)

    Article  MathSciNet  Google Scholar 

  33. Latorre, M., Segura de León, S.: Elliptic 1-Laplacian equations with dynamical boundary conditions. J. Math. Anal. Appl. 464, 1051–1081 (2018)

  34. Lotz, H.P.: Uniform convergence of operators on \(L^\infty \) and similar spaces. Math. Z. 190, 207–220 (1985)

    Article  MathSciNet  Google Scholar 

  35. Mazón, J.M., Rossi, J.D., Segura de León, S.: Functions of least gradient and 1-harmonic functions. Indiana Univ. Math. J. 63, 1067–1084 (2014)

  36. Mazón, J.M., Rossi, J.D., Segura de León, S.: The 1-Laplacian elliptic equation with inhomogeneous Robin boundary conditions. Differ. Integral Equ. 28, 409–430 (2015)

  37. Maz’ya, V.: Sobolev spaces with applications to elliptic partial differential equations. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 342, augmented Springer, Heidelberg (2011)

  38. Miranda, M.: Comportamento delle successioni convergenti di frontiere minimali. Rend. Sem. Mat. Univ. Padova 38, 238–257 (1967)

    MathSciNet  MATH  Google Scholar 

  39. Modica, L.: Gradient theory of phase transitions with boundary contact energy. Ann. Inst. H. Poincaré Anal. Non Linéaire 4, 487–512 (1987)

  40. Moradifam, A.: Existence and structure of minimizers of least gradient problems. Indiana Univ. Math. J. 67, 1025–1037 (2018)

    Article  MathSciNet  Google Scholar 

  41. Parks, H.: Explicit determination of area minimizing hypersurfacess. Duke Math. J. 44, 519–534 (1977)

    Article  MathSciNet  Google Scholar 

  42. Parks, H.R.: Explicit determination of area minimizing hypersurfaces. II, Mem. Amer. Math. Soc., 60, iv+90 (1986)

  43. Parks, H.R., Ziemer, W.P.: Jacobi fields and regularity of functions of least gradient. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 11(4), 505–527 (1984)

  44. Rockafellar, R.T.: Characterization of the subdifferentials of convex functions. Pacific J. Math. 17, 497–510 (1966)

    Article  MathSciNet  Google Scholar 

  45. Rondi, L.: A Friedrichs-Maz’ya inequality for functions of bounded variation. Math. Nachr. 290, 1830–1839 (2017)

  46. Salo, M., Zhong, X.: An inverse problem for the p-Laplacian: boundary determination. SIAM J. Math. Anal. 44, 2474–2495 (2012)

    Article  MathSciNet  Google Scholar 

  47. Showalter, R.E.: Monotone operators in Banach space and nonlinear partial differential equations. Mathematical Surveys and Monographs, vol. 49. American Mathematical Society, Providence, RI (1997)

  48. Spradlin, G.S., Tamasan, A.: Not all traces on the circle come from functions of least gradient in the disk. Indiana Univ. Math. J. 63, 1819–1837 (2014)

    Article  MathSciNet  Google Scholar 

  49. Sternberg, P., Williams, G., Ziemer, W.P.: Existence, uniqueness, and regularity for functions of least gradient. J. Reine Angew. Math. 430, 35–60 (1992)

    MathSciNet  MATH  Google Scholar 

  50. Sternberg, P., Ziemer, W.P., Dirichlet, The, problem for functions of least gradient. In: Degenerate diffusions (Minneapolis, MN,: vol. 47 of IMA Vol. Math. Appl. Springer, New York 1993, 197–214 (1991)

  51. Ziemer, W.P.: Weakly differentiable functions, vol. 120 of Graduate Texts in Mathematics, Springer, New York. Sobolev spaces and functions of bounded variation (1989)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Hauer.

Additional information

Communicated by Y. Giga.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Daniel Hauer is very grateful for the kind invitation to the Universitat de València and their hospitality. In the second half of the research project, he was supported by the Australian Research Council Grant DP200101065. José M. Mazón was partially supported by the Spanish MCIU and FEDER, Project PGC2018-094775-B-100.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hauer, D., Mazón, J.M. The Dirichlet-to-Neumann operator associated with the 1-Laplacian and evolution problems. Calc. Var. 61, 37 (2022). https://doi.org/10.1007/s00526-021-02149-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-02149-5

Mathematics Subject Classification

Navigation