Skip to main content
Log in

Global classical solutions of 3D compressible viscoelastic system near equilibrium

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we prove the global existence of general small solutions to compressible viscoelastic system. We remove the “initial state” assumption (\({\widetilde{\rho }}_0 \det F_0 =1\)) and the “div-curl” structure assumption compared with previous works. It then broadens the class of solutions to a great extent. More precisely, the initial density state would not be constant necessarily, and no more structure is needed for global well-posedness theory. It’s different from the elasticity system in which structure plays an important role. Since we can not obtain dissipation information for density and deformation tensor directly, we introduce a new effective flux. The core thought is regarding the wildest “nonlinear term” as “linear term”. Although the Sobolev norms of solution may increase now, we can still obtain the global existence for it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barrett, J., Lu, Y., Suli, E.: Existence of large-data finite-energy global weak solutions to a compressible Oldroyd-B model. Commun. Math. Sci. 15, 1265–1323 (2017)

    Article  MathSciNet  Google Scholar 

  2. Chemin, J.-Y., Masmoudi, N.: About lifespan of regular solutions of equations related to viscoelastic fluids. SIAM J. Math. Anal. 33, 84–112 (2001)

    Article  MathSciNet  Google Scholar 

  3. Chen, Q., Miao, C.: Global well-posedness of viscoelastic fluids of Oldroyd type in Besov spaces. Nonlinear Anal. 68, 1928–1939 (2008)

    Article  MathSciNet  Google Scholar 

  4. Chen, Y., Zhang, P.: The global existence of small solutions to the incompressible viscoelastic fluid system in 2 and 3 space dimensions. Commun. Partial Differ. Equ. 31, 1793–1810 (2006)

    Article  MathSciNet  Google Scholar 

  5. Elgindi, T., Rousset, F.: Global regularity for some Oldroyd-B type models. Commun. Pure Appl. Math. 68, 2005–2021 (2015)

    Article  MathSciNet  Google Scholar 

  6. Endo, M., Giga, Y., Gotz, D., Liu, C.: Stability of a two-dimensional Poiseuille-type flow for a viscoelastic fluid. J. Math. Fluid Mech. 19, 17–45 (2017)

    Article  MathSciNet  Google Scholar 

  7. Fang, D., Zi, R.: Incompressible limit of Oldroyd-B fluids in the whole space. J. Differ. Equ. 256, 2559–2602 (2014)

    Article  MathSciNet  Google Scholar 

  8. Feng, Z., Zhu, C., Zi, R.: Blow-up criterion for the incompressible viscoelastic flows. J. Funct. Anal. 272, 3742–3762 (2017)

    Article  MathSciNet  Google Scholar 

  9. Guillope, C., Saut, J.: Global existence and one-dimensional nonlinear stability of shearing motions of viscoelastic fluids of Oldroyd type. ESAIM Math. Model. Numer. Anal. 24, 369–401 (2009)

    Article  MathSciNet  Google Scholar 

  10. He, L., Xu, L.: Global well-posedness for viscoelastic fluid system in bounded domains. SIAM J. Math. Anal. 42, 2610–2625 (2010)

    Article  MathSciNet  Google Scholar 

  11. Hu, X., Lin, F.: Global solutions of two-dimensional incompressible viscoelastic flows with discontinuous initial data. Commun. Pure Appl. Math. 69, 372–404 (2016)

    Article  MathSciNet  Google Scholar 

  12. Hu, X., Lin, F., Liu, C.: Equations for viscoelastic fluids. In: Handbook of Mathematical Analysis in Mechanics of Viscous Fluids. Springer, Berlin (2016). https://doi.org/10.1007/978-3-319-10151-4_25-1

  13. Hu, X., Masmoudi, N.: Global solutions to repulsive Hookean elastodynamics. Arch. Ration. Mech. Anal. 223, 543–590 (2017)

    Article  MathSciNet  Google Scholar 

  14. Hu, X., Wang, D.: Global existence for the multi-dimensional compressible viscoelastic flows. J. Differ. Equ. 250, 1200–1231 (2011)

    Article  MathSciNet  Google Scholar 

  15. Huo, X., Yong, W.: Structural stability of a 1D compressible viscoelastic fluid model. J. Differ. Equ. 261, 1264–1284 (2016)

    Article  MathSciNet  Google Scholar 

  16. Jia, J., Peng, J.: Optimal time decay rate for the compressible viscoelastic equations in critical spaces. Appl. Anal. 96, 2044–2064 (2017)

    Article  MathSciNet  Google Scholar 

  17. Jiang, F., Jiang, S., Wu, G.: On stabilizing effect of elasticity in the Rayleigh-Taylor problem of stratified viscoelastic fluids. J. Funct. Anal. 272, 3763–3824 (2017)

    Article  MathSciNet  Google Scholar 

  18. Lei, Z., Liu, C., Zhou, Y.: Global solutions for a 2D incompressible viscoelastic model with small strain. Commun. Math. Sci. 5, 595–616 (2007)

    Article  MathSciNet  Google Scholar 

  19. Lei, Z., Liu, C., Zhou, Y.: Global solutions for incompressible viscoelastic fluids. Arch. Ration. Mech. Anal. 188, 371–398 (2008)

    Article  MathSciNet  Google Scholar 

  20. Lei, Z., Zhou, Y.: Global existence of classical solutions for the two-dimensional Oldroyd model via the incompressible limit. SIAM J. Math. Anal. 37, 797–814 (2005)

    Article  MathSciNet  Google Scholar 

  21. Lin, F., Liu, C., Zhang, P.: On hydrodynamics of viscoelastic fluids. Commun. Pure Appl. Math. 58, 1437–1471 (2005)

    Article  MathSciNet  Google Scholar 

  22. Lin, F., Zhang, P.: On the initial-boundary value problem of the incompressible viscoelastic fluid system. Commun. Pure Appl. Math. 61, 539–558 (2008)

    Article  MathSciNet  Google Scholar 

  23. Lions, P.L., Masmoudi, N.: Global solutions for some Oldroyd models of non-Newtonian flows. Chin. Ann. Math. Ser. B 21, 131–146 (2000)

    Article  MathSciNet  Google Scholar 

  24. Masmoudi, N.: Global existence of weak solutions to the FENE dumbbell model of polymeric flows. Invent. Math. 191, 427–500 (2013)

    Article  MathSciNet  Google Scholar 

  25. Pan, X., Xu, J.: Global existence and optimal decay estimates of strong solutions to the compressible viscoelastic flows. arxiv:1711.11325 (2017)

  26. Qian, J., Zhang, Z.: Global well-posedness for compressible viscoelastic fluids near equilibrium. Arch. Ration. Mech. Anal. 198, 835–868 (2010)

    Article  MathSciNet  Google Scholar 

  27. Sideris, T.C., Thomases, B.: Global existence for three-dimensional incompressible isotropic elastodynamics. Commun. Pure Appl. Math. 60, 1707–1730 (2007)

    Article  MathSciNet  Google Scholar 

  28. Thomases, B., Shelley, M.: Emergence of singular structures in Oldroyd-B fluids. Phys. Fluids 19, 103103 (2007)

    Article  Google Scholar 

  29. Wu, G., Gao, Z., Tan, Z.: Time decay rates for the compressible viscoelastic flows. J. Math. Anal. Appl. 452, 990–1004 (2017)

    Article  MathSciNet  Google Scholar 

  30. Zhang, T., Fang, D.: Global existence of strong solution for equations related to the incompressible viscoelastic fluids in the critical \(L^p\) framework. SIAM J. Math. Anal. 44, 2266–2288 (2012)

    Article  MathSciNet  Google Scholar 

  31. Zhu, Y.: Global small solutions of 3D incompressible Oldroyd-B model without damping mechanism. J. Funct. Anal. 274, 2039–2060 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author sincerely appreciates the helpful suggestion from Professor Zhen Lei. The author is supported by Shanghai Sailing Program (18YF1405500), Fundamental Research Funds for the Central Universities (222201814026), China Postdoctoral Science Foundation (2018M630406, 2019T120308) and NSFC (11801175).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Zhu.

Additional information

Communicated by F.-H. Lin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y. Global classical solutions of 3D compressible viscoelastic system near equilibrium. Calc. Var. 61, 21 (2022). https://doi.org/10.1007/s00526-021-02127-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-02127-x

Mathematics Subject Classification

Navigation