Skip to main content
Log in

Vanishing-concentration-compactness alternative for critical Sobolev embedding with a general integrand in \(\mathbb R^2\)

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

A maximizing problem associated with the Moser–Pohozaev–Trudinger–Yudovich type inequality proved in Ruf (J Funct Anal 219:340–367, 2005) states:

$$\begin{aligned} d(\alpha ):=\sup _{u\in H^1(R^2), \,\Vert u\Vert _{H^1}=1} \int _{R^2}(e^{\alpha |u|^2}-1)<\infty \end{aligned}$$

for \(0<\alpha \le 4\pi \). Do Ó–Sani–Tarsi (Commun Contemp Math 20:1650036, 2018) established the vanishing-concentration-compactness (VCC) alternative with respect to any maximizing sequence for \(d(\alpha )\). In this paper, we consider a maximizing problem with a general integrand:

$$\begin{aligned} d_\varPhi (\alpha ):=\sup _{u\in H^1(R^2), \,\Vert u\Vert _{H^1}=1}\int _{R^2}\varPhi _\alpha (|u|), \end{aligned}$$

where \(\varPhi \in C([0,\infty ))\) with \(\alpha >0\) and \(\varPhi _\alpha (s):=\varPhi (\sqrt{\alpha }s)\) for \(s\ge 0\). Our aim is to extract sufficient conditions for \(\varPhi \) under which the (VCC) alternative still holds for \(d_\varPhi (\alpha )\). As a result, assuming \(\lim _{s\rightarrow \infty }\frac{\varPhi (s)}{\varPhi ((1+\varepsilon )s)}=0\) with any small \(\varepsilon >0\) as an essential condition, we prove the (VCC) alternative for \(d_\varPhi (\alpha )\) which extends not only \(d(\alpha )\) but other various examples untreated so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adachi, S., Tanaka, K.: A scale-invariant form of Trudinger–Moser inequality and its best exponent. Proc. Am. Math. Soc. 1102, 148–153 (1999)

    MathSciNet  MATH  Google Scholar 

  2. Adimurthi, Yang, Y.: An interpolation of Hardy inequality and Trudinger–Moser inequality in \(\mathbb{R}^N\) and its applications. Int. Math. Res. Not. 13, 2394–2426 (2010)

  3. Bennett, C., Sharpley, R.: Interpolation of Operators. Acdemic Press, Inc., Boston (1988)

    MATH  Google Scholar 

  4. Berestycki, H., Lions, P.L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Ration. Mech. Anal. 82, 313–345 (1983)

    Article  MathSciNet  Google Scholar 

  5. Brézis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88, 486–490 (1983)

    Article  MathSciNet  Google Scholar 

  6. Cao, D.M.: Nontrivial solution of semilinear elliptic equation with critical exponent in \({\mathbb{R}}^2\). Commun. Partial Differ. Equ. 17, 407–435 (1992)

    Article  Google Scholar 

  7. Carleson, L., Chang, S.Y.A.: On the existence of an extremal function for an inequality of. J. Moser Bull. Sci. Math. 2(110), 113–127 (1986)

    MathSciNet  MATH  Google Scholar 

  8. Cassani, D., Sani, F., Tarsi, C.: Equivalent Moser type inequalities in \({\mathbb{R}}^2\) and the zero mass case. J. Funct. Anal. 267, 4236–4263 (2014)

    Article  MathSciNet  Google Scholar 

  9. Do, J.M.: \(N\)-Laplacian equations in \(\mathbb{R}^N\) with critical growth. Abstr. Appl. Anal. 2, 301–315 (1997)

    Article  MathSciNet  Google Scholar 

  10. Do Ó, J.M., Sani, F., Tarsi, C.: Vanishing-concentration-compactness alternative for the Trudinger–Moser inequality in \(\mathbb{R}^N\). Commun. Contemp. Math. 20, 1650036 (2018)

    Article  MathSciNet  Google Scholar 

  11. Flucher, M.: Extremal functions for the Trudinger–Moser inequality in \(2\) dimensions. Commun. Math. Helv. 67, 471–479 (1992)

    Article  MathSciNet  Google Scholar 

  12. Ishiwata, M.: Existence and nonexistence of maximizers for variational problems associated with Trudinger–Moser type inequalities in \({\mathbb{R}}^N\). Math. Ann. 351, 781–804 (2011)

    Article  MathSciNet  Google Scholar 

  13. Ikoma, N., Ishiwata, M., Wadade, H.: Existence and non-existence of maximizers for the Moser–Trudinger type inequalities under inhomogeneous constraints. Math. Ann. 373, 831–851 (2019)

    Article  MathSciNet  Google Scholar 

  14. Ishiwata, M., Nakamura, M., Wadade, H.: On the sharp constant for the weighted Trudinger–Moser type inequality of the scaling invariant form. Ann. Inst. H. Poincaré Anal. Non Linéaire 31, 297–314 (2014)

    Article  MathSciNet  Google Scholar 

  15. Ishiwata, M., Wadade, H.: On the effect of equivalent constraints on a maximizing problem associated with the Sobolev type embeddings in \({\mathbb{R}}^N\). Math. Ann. 364, 1043–1068 (2016)

    Article  MathSciNet  Google Scholar 

  16. Kesavan, S.: Symmetrization and Applications. World Scientific Publishing Co. Pte. Ltd, Singapore (2006)

    Book  Google Scholar 

  17. Kokilashvili, V., Krbec, M.: Weighted Inequalities in Lorentz and Orlicz Spaces. World Scientific Publishing Co. Pte. Ltd, Singapore (1991)

    Book  Google Scholar 

  18. Lam, N.: Maximizers for the singular Trudinger–Moser inequalities in the subcritical cases. Proc. Am. Math. Soc. 145, 4885–4892 (2017)

    Article  MathSciNet  Google Scholar 

  19. Lam, N., Lu, G.: Sharp singular Adams inequalities in high order Sobolev spaces. Methods Appl. Anal. 19, 243–266 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Lam, N., Lu, G., Zhang, L.: Equivalence of critical and subcritical sharp Trudinger–Moser–Adams inequalities. Rev. Mat. Iberoam. 33, 1219–1246 (2017)

    Article  MathSciNet  Google Scholar 

  21. Li, Y., Ruf, B.: A sharp Trudinger–Moser type inequality for unbounded domains in \({\mathbb{R}}^n\). Indiana Univ. Math. J. 57, 451–480 (2008)

    Article  MathSciNet  Google Scholar 

  22. Li, X., Yang, Y.: Extremal functions for singular Trudinger–Moser inequalities in the entire Euclidean space. J. Differ. Equ. 264, 4901–4943 (2018)

    Article  MathSciNet  Google Scholar 

  23. Lin, K.C.: Extremal functions for Mosers inequality. Trans. Am. Math. Soc. 348, 2663–2671 (1996)

    Article  MathSciNet  Google Scholar 

  24. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case. I. Ann. Inst. H. Poincare Anal. Non Lineaire 1, 109–145 (1984)

    Article  MathSciNet  Google Scholar 

  25. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case. II. Ann. Inst. H. Poincare Anal. Non Lineaire 1, 223–283 (1984)

    Article  MathSciNet  Google Scholar 

  26. Lions, P.L.: The concentration-compactness principle in the calculus of variations The limit case. I. Rev. Math. Iberoam. 1, 145–201 (1985)

    Article  MathSciNet  Google Scholar 

  27. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The limit case. II. Rev. Math. Iberoam. 1, 45–121 (1985)

    Article  MathSciNet  Google Scholar 

  28. Moser, J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20, 1077–1092 (1970/1971)

  29. Ogawa, T.: A proof of Trudingers inequality and its application to nonlinear Schrodinger equation. Nonlinear Anal. 14, 765–769 (1990)

    Article  MathSciNet  Google Scholar 

  30. Ogawa, T., Ozawa, T.: Trudinger type inequalities and uniqueness of weak solutions for the nonlinear Schrodinger mixed problem. J. Math. Anal. Appl. 155, 531–540 (1991)

    Article  MathSciNet  Google Scholar 

  31. Ozawa, T.: Characterization of Trudingers inequality. J. Inequal. Appl. 1, 369–374 (1997)

    MathSciNet  MATH  Google Scholar 

  32. Ozawa, T.: On critical cases of Sobolevs inequalities. J. Funct. Anal. 127, 259–269 (1995)

    Article  MathSciNet  Google Scholar 

  33. Pohozaev, S.I.: The Sobolev embedding in the case \(pl=n\). In: Proceedings of the Technical Scientific Conference on Advances of Scientific Research 1964–1965. Mathematics Section, pp. 158–170. Moskov. Energetics Inst., Moscow (1965)

  34. Rao, M.M., Ren, Z.D.: Theory of Orlicz Spaces. Marcel Dekker Inc, New York (1991)

    MATH  Google Scholar 

  35. Ruf, B.: A sharp Trudinger–Moser type inequality for unbounded domains in \({\mathbb{R}}^2\). J. Funct. Anal. 219, 340–367 (2005)

    Article  MathSciNet  Google Scholar 

  36. Strauss, W.A.: Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55, 149–162 (1977)

    Article  MathSciNet  Google Scholar 

  37. Struwe, M.: Critical points of embeddings of \(W^{1,N}_0\) into Orlicz spaces. Ann. Inst. H. Poincaré Anal. Non Linéaire 5, 425–464 (1988)

    Article  MathSciNet  Google Scholar 

  38. Trudinger, N.S.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17, 473–483 (1967)

    MathSciNet  MATH  Google Scholar 

  39. Yudovich, V.I.: Some estimates connected with integral operators and with solutions of elliptic equations. Dok. Akad. Nauk SSSR 138, 805–808 (1961)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidemitsu Wadade.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Y. Giga.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wadade, H., Ishiwata, M. Vanishing-concentration-compactness alternative for critical Sobolev embedding with a general integrand in \(\mathbb R^2\). Calc. Var. 60, 203 (2021). https://doi.org/10.1007/s00526-021-02076-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-02076-5

Mathematics Subject Classification

Navigation