Skip to main content
Log in

Traveling vortex pairs for 2D incompressible Euler equations

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we study desingularization of vortices for the two-dimensional incompressible Euler equations in the full plane. We construct a family of traveling vortex pairs for the Euler equations with a general vorticity function, which constitutes a desingularization of a pair of point vortices with equal intensities but opposite signs. The results are obtained by using an improved vorticity method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abe, K., Choi, K.: Stability of Lamb dipoles, Preprint.

  2. Ambrosetti, A., Rabinowitz, P.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)

    Article  MathSciNet  Google Scholar 

  3. Ambrosetti, A., Yang, J 1990 Asymptotic behaviour in planar vortex theory. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl. 1(4): 285-291

  4. Arnold V. I.: Conditions for nonlinear stability of stationary plane curvilinear flows of an ideal fluid, Soviet Math. Doklady 162(1965), 773–777; Translation of Dokl. Akad. Nauk SSSR, 162(1965), 975-998

  5. Badiani, T.V.: Existence of steady symmetric vortex pairs on a planar domain with an obstacle. Math. Proc. Cambridge Philos. Soc. 123, 365–384 (1998)

    Article  MathSciNet  Google Scholar 

  6. Berestycki, H., Brézis, H, : On a free boundary problem arising in plasma physics. Nonlinear Anal. 4, 415–436 (1980)

  7. Burton, G.R.: Steady symmetric vortex pairs and rearrangements. Proc. R. Soc. Edinb. Sect. A 108, 269–290 (1988)

  8. Burton, G.R.: Uniqueness for the circular vortex-pair in a uniform flow. Proc. Roy. Soc. London Ser. A 452(1953), 2343–2350 (1996)

    Article  MathSciNet  Google Scholar 

  9. Burton, G.R.: Isoperimetric properties of Lambs circular vortex-pair. J. Math. Fluid Mech. 7, S68–S80 (2005)

    Article  MathSciNet  Google Scholar 

  10. Burton, G.R.: Global nonlinear stability for steady ideal fluid flow in bounded planar domains. Arch. Ration. Mech. Anal. 176, 149–163 (2005)

    Article  MathSciNet  Google Scholar 

  11. Burton, G.R.: Compactness and stability for planar vortex-pairs with prescribed impulse. J. Differ. Equ. 270, 547–572 (2021)

    Article  MathSciNet  Google Scholar 

  12. Burton, G.R., Nussenzveig Lopes, H.J., Lopes Filho, M.C.: Nonlinear stability for steady vortex pairs. Comm. Math. Phys. 324, 445–463 (2013)

    Article  MathSciNet  Google Scholar 

  13. Cao, D., Liu, Z., Wei, J.: Regularization of point vortices for the Euler equation in dimension two. Arch. Ration. Mech. Anal. 212, 179–217 (2014)

    Article  MathSciNet  Google Scholar 

  14. Cao, D., Wang, G., Zhan, W.: Desingularization of vortices for 2D steady Euler flows via the vorticity method. SIAM J. Math. Anal. 52(6), 5363–5388 (2020)

    Article  MathSciNet  Google Scholar 

  15. Dávila, J., Del Pino, M., Musso, M., Wei, J, : Gluing methods for vortex dynamics in Euler flows. Arch. Ration. Mech. Anal. 235(3), 1467–1530 (2020)

  16. DeLillo, T., Elcrat, A., Kropf, E.: Steady vortex dipoles with general profile functions. J. Fluid Mech. 670, 85–95 (2011)

    Article  MathSciNet  Google Scholar 

  17. Elcrat, A.R., Miller, K.G.: Steady vortex flows with circulation past asymmetric obstacles. Comm. Part. Differ. Equ. 12(10), 1095–1115 (1987)

    Article  MathSciNet  Google Scholar 

  18. Elcrat, A.R., Miller, K.G.: Rearrangements in steady vortex flows with circulation. Proc. Amer. Math. Soc. 111, 1051–1055 (1991)

    Article  MathSciNet  Google Scholar 

  19. Eydeland, A., Turkington, B.: A computational method of solving free-boundary problems in vortex dynamics. J. Comput. Phys. 78, 194–214 (1988)

    Article  MathSciNet  Google Scholar 

  20. Flor, J., Van Heijst, G.J.F.: An experimental study of dipolar vortex structures in a stratified fluid. J. Fluid Mech. 279, 101–133 (1994)

    Article  Google Scholar 

  21. Fraenkel, L.E., Berger, M.S.: A global theory of steady vortex rings in an ideal fluid. Acta Math. 132, 13–51 (1974)

    Article  MathSciNet  Google Scholar 

  22. Heijst, G.J.F.V., Flor, J.B.: Dipole formation and collisions in a stratified fluid. Nature 340, 212–215 (1989)

    Article  Google Scholar 

  23. Hmidi, T., Mateu, J.: Existence of corotating and counter-rotating vortex pairs for active scalar equations. Comm. Math. Phys. 350, 699–747 (2017)

    Article  MathSciNet  Google Scholar 

  24. Kizner, Z., Khvoles, R.: Two variations on the theme of Lamb-Chaplygin: supersmooth dipole and rotating multipoles. Regul. Chaotic Dyn. 9(4), 509–518 (2004)

    Article  MathSciNet  Google Scholar 

  25. Lamb, H.: Hydrodynamics, 3rd edn. Cambridge University Press, Cambridge (1906)

    MATH  Google Scholar 

  26. Majda, A., Bertozzi, A.: Vorticity and incompressible flow. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  27. Marchioro, C., Pulvirenti, M.: Mathematical theory of incompressible nonviscous fluids. Springer, New York (1994)

    Book  Google Scholar 

  28. Meleshko, V.V., van Heijst, G.J.F.: On Chaplygins investigations of two-dimensional vortex structures in an inviscid fluid. J. Fluid Mech. 272, 157–182 (1994)

    Article  MathSciNet  Google Scholar 

  29. Ni, W.M.: On the existence of global vortex rings. J. Anal. Math. 37, 208–247 (1980)

    Article  MathSciNet  Google Scholar 

  30. Norbury, J.: Steady planar vortex pairs in an ideal fluid. Comm. Pure Appl. Math. 28, 679–700 (1975)

    Article  MathSciNet  Google Scholar 

  31. Pocklington, H.C.: The configuration of a pair of equal and opposite hollow and straight vortices of finite cross-section, moving steadily through fluid. Proc. Camb. Phil. Soc. 8, 178–187 (1895)

    MATH  Google Scholar 

  32. Rockafellar, T.: Convex Analysis. Princeton University Princeton, NJ (1972)

    Google Scholar 

  33. Smets, D., Van Schaftingen, J.: Desingularization of vortices for the Euler equation. Arch. Ration. Mech. Anal. 198(3), 869–925 (2010)

    Article  MathSciNet  Google Scholar 

  34. Stuart, C.A., Toland, J.F.: A variational method for boundary value problems with discontinuous nonlinearities. J. London Math. Soc. 21, 329–335 (1980)

    Article  MathSciNet  Google Scholar 

  35. Toland, J.F.: A duality principle for non-convex optimisation and the calculus of variations. Arch. Rational Mech. Anal. 71, 41–61 (1979)

    Article  MathSciNet  Google Scholar 

  36. Turkington, B.: On steady vortex flow in two dimensions, I, II. Comm. Partial Differ. Equ. 8, 999–1030 (1983)

    Article  MathSciNet  Google Scholar 

  37. Yang, J.: Existence and asymptotic behavior in planar vortex theory. Math. Models Methods Appl. Sci. 1, 461–475 (1991)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referee for his/her helpful comments. This work was supported by NNSF of China (Grant 11831009) and Chinese Academy of Sciences (No. QYZDJ-SSW-SYS021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weicheng Zhan.

Additional information

Communicated by A. Malchiod.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, D., Lai, S. & Zhan, W. Traveling vortex pairs for 2D incompressible Euler equations. Calc. Var. 60, 190 (2021). https://doi.org/10.1007/s00526-021-02068-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-02068-5

Mathematics Subject Classification

Navigation