Skip to main content

Sharp Sobolev inequalities involving boundary terms revisited


We revisit the sharp Sobolev inequalities involving boundary terms on Riemannian manifolds with boundaries proved by Li and Zhu (Geom Funct Anal 8: 59–87, 1998) and explore the role of the mean curvature.

This is a preview of subscription content, access via your institution.


  1. Adimurthi, Yadava, S.L.: Some remarks on Sobolev type inequalities. Calc. Var. Partial Differ. Equ. 2(4), 427–442 (1994)

    Article  MathSciNet  Google Scholar 

  2. Aubin, T.: Espaces de Sobolev sur les variétés riemanniennes. Bull. Sci. Math. (2) 100(2), 149–173 (1976)

    MathSciNet  MATH  Google Scholar 

  3. Aubin, T.: Problèmes isopérimétriques et espaces de Sobolev. J. Differ. Geom. 11(4), 573–598 (1976)

    Article  Google Scholar 

  4. Aubin, T., Li, Y.Y.: On the best Sobolev inequality. J. Math. Pures Appl. (9) 78(4), 353–387 (1999)

    Article  MathSciNet  Google Scholar 

  5. Bahri, A., Coron, J.M.: The scalar-curvature problem on the standard three-dimensional sphere. J. Funct. Anal. 95(1), 106–172 (1991)

    Article  MathSciNet  Google Scholar 

  6. Brézis, H., Lieb, E.: Sobolev inequalities with remainder terms. J. Funct. Anal. 62(1), 73–86 (1985)

    Article  MathSciNet  Google Scholar 

  7. Brézis, H., Strauss, W.A.: Semi-linear second-order elliptic equations in \(L^1\). J. Math. Soc. Japan 25, 565–590 (1973)

    Article  MathSciNet  Google Scholar 

  8. Caffarelli, L.A., Gidas, B., Spruck, J.: Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Comm. Pure Appl. Math. 42(3), 271–297 (1989)

    Article  MathSciNet  Google Scholar 

  9. Cherrier, P.: Problèmes de Neumann non linéaires sur les variétés riemanniennes. J. Funct. Anal. 57(2), 154–206 (1984)

    Article  MathSciNet  Google Scholar 

  10. Druet, O.: The best constants problem in Sobolev inequalities. Math. Ann. 314(2), 327–346 (1999)

    Article  MathSciNet  Google Scholar 

  11. Druet, O.: Isoperimetric inequalities on compact manifolds. Geom. Dedicata 90, 217–236 (2002)

    Article  MathSciNet  Google Scholar 

  12. Druet, O., Hebey, E.: The AB program in geometric analysis: sharp Sobolev inequalities and related problems. Mem. Am. Math. Soc. 160(761), viii+98 (2002)

  13. Druet, O., Hebey, E., Vaugon, M.: Sharp Sobolev inequalities with lower order remainder terms. Trans. Am. Math. Soc. 353, 269–289 (2001)

    Article  MathSciNet  Google Scholar 

  14. Escobar, J.F.: Conformal deformation of a Riemannian metric to a scalar flat metric with constant mean curvature on the boundary. Ann. Math. (2) 136(1), 1–50 (1992)

    Article  MathSciNet  Google Scholar 

  15. Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry and related properties via the maximum principle. Comm. Math. Phys. 68(3), 209–243 (1979)

    Article  MathSciNet  Google Scholar 

  16. Hebey, E.: Sharp Sobolev-Poincaré inequalities on compact Riemannian manifolds. Trans. Am. Math. Soc. 354(3), 1193–1213 (2002)

    Article  MathSciNet  Google Scholar 

  17. Hebey, E., Vaugon, M.: Meilleures constantes dans le théorème d’inclusion de Sobolev. Ann. Inst. H. Poincaré Anal. Non Linéaire 13(1), 57–93 (1996)

  18. Jin, T.L., Xiong, J.G.: Sharp constants in weighted trace inequalities on Riemannian manifolds. Calc. Var. Partial Differ. Equ. 48(3–4), 555–585 (2013)

    Article  MathSciNet  Google Scholar 

  19. Jin, T.L., Xiong, J.G.: A sharp Sobolev trace inequality involving the mean curvature on Riemannian manifolds. Trans. Am. Math. Soc. 367(9), 6751–6770 (2015)

    Article  MathSciNet  Google Scholar 

  20. Kenig, C.E., Pipher, J.: The Neumann problem for elliptic equations with nonsmooth coefficients. Invent. Math. 113(3), 447–509 (1993)

    Article  MathSciNet  Google Scholar 

  21. Li, Y.Y.: On a singularly perturbed elliptic equation. Adv. Differ. Equ. 2(6), 955–980 (1997)

    MathSciNet  MATH  Google Scholar 

  22. Li, Y.Y., Ricciardi, T.: A sharp Sobolev inequality on Riemannian manifolds. Commun. Pure Appl. Anal. 2(1), 1–31 (2003)

    Article  MathSciNet  Google Scholar 

  23. Li, Y.Y., Zhu, M.J.: Sharp Sobolev trace inequalities on Riemannian manifolds with boundaries. Commun. Pure Appl. Math. 50(5), 449–487 (1997)

    Article  MathSciNet  Google Scholar 

  24. Li, Y.Y., Zhu, M.J.: Sharp Sobolev inequalities involving boundary terms. Geom. Funct. Anal. 8(1), 59–87 (1998)

    Article  MathSciNet  Google Scholar 

  25. Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 4(110), 353–372 (1976)

    Article  MathSciNet  Google Scholar 

Download references


J. Xiong would like to thank Tianling Jin for valuable discussions.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Zhongwei Tang.

Additional information

Communicated by N. Trudinger.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Z. Tang is supported by NSFC (No. 12071036).

J. Xiong is partially supported by the National Key R&D Program of China (No. 2020YFA0712900) and NSFC (No. 11922104,11631002).

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Z., Xiong, J. & Zhou, N. Sharp Sobolev inequalities involving boundary terms revisited. Calc. Var. 60, 160 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:

Mathematics Subject Classification