Skip to main content
Log in

Weak KAM theory for action minimizing random walks

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We introduce a class of controlled random walks on a grid in \({{\mathbb {T}}}^d\) and investigate global properties of action minimizing random walks for a certain action functional together with Hamilton–Jacobi equations on the grid. This yields an analogue of weak KAM theory, which recovers a part of original weak KAM theory through the hyperbolic scaling limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Anantharaman, N., Iturriaga, R., Padilla, P., Sanchez-Morgado, H.: Physical solutions of the Hamilton–Jacobi equation. Discrete Contin. Dyn. Syst. Ser. B 5(3), 513–528 (2005)

    MathSciNet  MATH  Google Scholar 

  2. Aubry, S., Le Daeron, P.Y.: The discrete Frenkel–Kontorova model and its extensions. I. Exact results for the ground-states. Phys. D 8(3), 381–422 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bernard, P., Buffoni, B.: Weak KAM pairs and Monge–Kantorovich duality. In: Asymptotic Analysis and Singularities-Elliptic and Parabolic PDEs and Related Problems. Advanced Studies in Pure Mathematics, pp. 397–420, 47-2, Math. Soc. Japan, Tokyo (2007)

  4. Bessi, U.: Aubry–Mather theory and Hamilton–Jacobi equations. Commun. Math. Phys. 235, 495–511 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bessi, U.: Viscous Aubry–Mather theory and the Vlasov equation. Discrete Contin. Dyn. Syst. 34(2), 379–420 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bouillard, A., Faou, E., Zavidovique, M.: Fast weak–KAM integrators for separable Hamiltonian systems. Math. Comput. 85(297), 85–117 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cannarsa, P., Sinestrari, C.: Semiconcave Functions, Hamilton–Jacobi Equations and Optimal Control. Birkhäuser, Boston (2004)

    Book  MATH  Google Scholar 

  8. Crandall, M.G., Lions, P.L.: Two approximations of solutions of Hamilton–Jacobi equations. Math. Comput. 43(167), 1–19 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, Q., Cheng, W., Ishii, H., Zhao, K.: Vanishing contact structure problem and convergence of the viscosity solutions. Commun. Partial Differ. Equ. 44(9), 801–836 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Davini, A., Fathi, A., Iturriaga, R., Zavidovique, M.: Convergence of the solutions of the discounted equation. Invent. Math. 206(1), 29–55 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Davini, A., Fathi, A., Iturriaga, R., Zavidovique, M.: Convergence of the solutions of the discounted equation: the discrete case. Math. Z. 284(3–4), 1021–1034 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. E, W.: Aubry–Mather theory and periodic solutions of the forced Burgers equation. Commun. Pure Appl. Math. 52(7), 811–828 (1999)

  13. Evans, L.C.: Towards a quantum analog of weak KAM theory. Commun. Math. Phys. 244, 311–334 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Evans, L.C.: Adjoint and compensated compactness methods for Hamilton–Jacobi PDE. Arch. Ration. Mech. Anal. 197, 1053–1088 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Evans, L.C., Gomes, D.A.: Effective Hamiltonians and averaging for Hamiltonian dynamics. I. Arch. Ration. Mech. Anal. 157(1), 1–33 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Evans, L.C., Gomes, D.A.: Effective Hamiltonians and averaging for Hamiltonian dynamics. II. Arch. Ration. Mech. Anal. 161(4), 271–305 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fathi, A.: Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens, (French) [A weak KAM theorem and Mather’s theory of Lagrangian systems]. C. R. Acad. Sci. Paris Sér. I Math. 324(9), 1043–1046 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fathi, A.: Solutions KAM faibles conjuguées et barrières de Peierls, (French) [Weakly conjugate KAM solutions and Peierls’s barriers]. C. R. Acad. Sci. Paris Ser. I Math. 325(6), 649–652 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fathi, A.: Orbites hétéroclines et ensemble de Peierls, (French) [Heteroclinic orbits and the Peierls set]. C. R. Acad. Sci. Paris Sér. I Math. 326(10), 1213–1216 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fathi, A.: Sur la convergence du semi-groupe de Lax–Oleinik, (French) [Convergence of the Lax–Oleinik semigroup]. C. R. Acad. Sci. Paris Sér. I Math. 327(3), 267–270 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fathi, A.: Weak KAM Theorem in Lagrangian Dynamics. Cambridge Univ, Cambridge (2011)

    Google Scholar 

  22. Fathi, A., Mather, J.: Failure of convergence of the Lax–Oleinik semi-group in the time-dependent case. Bull. Soc. Math. France 128, 473–483 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fathi, A., Siconolfi, A.: PDE aspects of Aubry–Mather theory for quasiconvex Hamiltonians. Calc. Var. Partial Differ. Equ. 22(2), 185–228 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fleming, W.H.: The Cauchy problem for a nonlinear first order partial differential equation. J. Differ. Equ. 5, 515–530 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gomes, D.A.: A stochastic analogue of Aubry–Mather theory. Nonlinearity 15, 581–603 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gomes, D.A.: Generalized Mather problem and selection principles for viscosity solutions and Mather measures. Adv. Calc. Var. 1(3), 291–307 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gomes, D.A., Oberman, A.M.: Computing the effective Hamiltonian using a variational approach. SIAM J. Control Optim. 43(3), 792–812 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Iturriaga, R.: Minimizing measures for time-dependent Lagrangians. Proc. Lond. Math. Soc. (3) 73(1), 216–240 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  29. Iturriaga, R., Sanchez-Morgado, H.: On the stochastic Aubry–Mather theory. Bol. Soc. Mat. Mex. (3) 11(1), 91–99 (2005)

    MathSciNet  MATH  Google Scholar 

  30. Iturriaga, R., Sanchez-Morgado, H.: Limit of the infinite horizon discounted Hamilton–Jacobi equation. Discrete Contin. Dyn. Syst. Ser. B 15, 623–635 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Jauslin, H.R., Kreiss, H.O., Moser, J.: On the forced Burgers equation with periodic boundary conditions. Proc. Sym. Pure Math. 65, 133–153 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lions, P.L., Papanicolaou, G., Varadhan, S.R.S.: Homogenization of Hamilton–Jacobi equations. unpublished (1988)

  33. Mañé, R.: Generic properties and problems of minimizing measures of Lagrangian systems. Nonlinearity 9, 273–310 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  34. Marò, S., Sorrentino, A.: Aubry–Mather theory for conformally symplectic systems. Commun. Math. Phys. 354(2), 775–808 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mather, J.: Existence of quasiperiodic orbits for twist homeomorphisms of the annulus. Topology 21(4), 457–467 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mather, J.: Action minimizing invariant measures for positive definite Lagrangian systems. Math. Z. 207(2), 169–207 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mitake, H., Soga, K.: Weak KAM theory for discounted Hamilton–Jacobi equations and its application. Calc. Var. PDEs 57, 78 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Mitake, H., Tran, H.V.: Selection problems for a discounted degenerate viscous Hamilton–Jacobi equation. Adv. Math. 306, 684–703 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Moser, J.: Monotone twist mappings and the calculus of variations. Ergod. Theory Dyn. Syst. 6, 401–413 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  40. Moser, J.: Smooth approximation of Mather sets of monotone twist mappings. Commun. Pure Appl. Math. 47(5), 625–652 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  41. Nishida, T., Soga, K.: Difference approximation to Aubry–Mather sets of the forced Burgers equation. Nonlinearity 25, 2401–2422 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Oleinik, O.A.: Discontinuous solutions of nonlinear differential equations. Adv. Math. Sci. Transl. (ser. 2) 26, 95–172 (1957)

    MATH  Google Scholar 

  43. Rorro, M.: An approximation scheme for the effective Hamiltonian and applications. Appl. Numer. Math. 56(9), 1238–1254 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  44. Soga, K.: Space-time continuous limit of random walks with hyperbolic scaling. Nonlinear Anal. 102, 264–271 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. Soga, K.: Stochastic and variational approach to the Lax–Friedrichs scheme. Math. Comput. 84(292), 629–651 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  46. Soga, K.: More on stochastic and variational approach to the Lax–Friedrichs scheme. Math. Comput. 85(301), 2161–2193 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  47. Soga, K.: Selection problems of \({\mathbb{Z}}^2\)-periodic entropy solutions and viscosity solutions. Cal. Var. PDEs 56, 4 (2017)

    Google Scholar 

  48. Soga, K.: Stochastic and variational approach to finite difference approximation of Hamilton–Jacobi equations. Math. Comput. 89(323), 1135–1159 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  49. Souganidis, P.E.: Approximation schemes for viscosity solutions of Hamilton–Jacobi equations. J. Differ. Equ. 59, 1–43 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  50. Wang, K., Wang, L., Yan, J.: Implicit variational principle for contact Hamiltonian systems. Nonlinearity 30(2), 492–515 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  51. Wang, K., Wang, L., Yan, J.: Variational principle for contact Hamiltonian systems and its applications. J. Math. Pures Appl. 9(123), 167–200 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  52. Wang, K., Wang, L., Yan, J.: Aubry–Mather theory for contact Hamiltonian systems. Commun. Math. Phys. 366(3), 981–1023 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  53. Zavidovique, M.: Strict sub-solutions and Mañé potential in discrete weak KAM theory. Comment. Math. Helv. 87, 1–39 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is supported by JSPS Grant-in-aid for Young Scientists #18K13443.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kohei Soga.

Additional information

Communicated by Y. Giga.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soga, K. Weak KAM theory for action minimizing random walks. Calc. Var. 60, 179 (2021). https://doi.org/10.1007/s00526-021-02025-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-02025-2

Mathematics Subject Classification

Navigation