Skip to main content
Log in

Some conformally invariant gap theorems for Bach-flat 4-manifolds

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

S.-Y. A. Chang, J. Qing, and P. Yang proved an important gap theorem for Bach-flat metrics with round sphere as model case in 2007. In this article, we generalize this result by establishing conformally invariant gap theorems for Bach-flat 4-manifolds with \((\mathbb {CP}^2, g_{FS})\) and \((S^2 \times S^2,g_{prod})\) as model cases. An iteration argument plays an important role in the case of \((\mathbb {CP}^2, g_{FS})\) and the convergence theory of Bach-flat metrics is of particular importance in the case of \((S^2 \times S^2,g_{prod})\). The latter result provides an interesting way to distinguish \((S^2 \times S^2,g_{prod})\) from \((\mathbb {CP}^2\#\bar{\mathbb {CP}}^2,g_{Page})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bach, R.: Zur Welschen Relavititätstheorie und der Weylschen Erweiterung des Krümmungstensorbegriffs. Math. Z. 9, 110–135 (1921)

    Article  MathSciNet  Google Scholar 

  2. Besse, A.: Einstein Manifolds. Springer, New York (1987)

    Book  Google Scholar 

  3. Bray, H., Neves, A.: Classification of prime \(3\)-manifolds with \(\sigma \)-invariant greater than \(\mathbb{RP}^3\). Ann. Math. 159, 407–424 (2004)

    Article  MathSciNet  Google Scholar 

  4. Chang, S.-Y.A., Gursky, M., Yang, P.: An equation of Monge-Ampère type in conformal geometry, and four-manifolds of positive Ricci curvature. Ann. Math. 155, 709–787 (2002)

    Article  MathSciNet  Google Scholar 

  5. Chang, S.-Y.A., Gursky, M., Yang, P.: A conformally invariant sphere theorem in four dimensions. Publ. Math. IHÉS 98, 105–143 (2003)

    Article  MathSciNet  Google Scholar 

  6. Chang, S.-Y.A., Gursky, M., Zhang, S.: A conformally invariant gap theorem characterizing \(\mathbb{CP}^2\) via the Ricci flow. Math. Z. 294, 721–746 (2020)

    Article  MathSciNet  Google Scholar 

  7. Chang, S.-Y.A., Qing, J., Yang, P.: On a conformal gap and finiteness theorem for a class of four-manifolds. Geom. Func. Anal. 17, 404–434 (2007)

    Article  MathSciNet  Google Scholar 

  8. Chen, X., LeBrun, C., Weber, B.: On conformally Kähler, Einstein manifolds. J. Am. Math. Soc. 21, 1137–1168 (2008)

    Article  Google Scholar 

  9. Derdziński, A.: Self-dual Kähler manifolds and Einstein manifolds of dimension four. Comput. Math. 49, 405–433 (1983)

    MATH  Google Scholar 

  10. Gursky, M.: The Weyl functional, de Rham cohomology, and Kähler-Einstein metrics. Ann. Math. 148, 315–337 (1998)

    Article  MathSciNet  Google Scholar 

  11. Gursky, M.: Four-manifolds with \(\delta {W}^+=0\) and Einstein constants of the sphere. Math. Ann. 318, 417–431 (2000)

    Article  MathSciNet  Google Scholar 

  12. Gursky, M., Viaclovsky, J.: Rigidity and stability of Einstein metrics for quadratic curvature functionals. J. Reine Angew. Math. 700, 37–91 (2015)

    MathSciNet  MATH  Google Scholar 

  13. Kobayashi, O.: Scalar curvature of a metric with unit volume. Math. Ann. 279, 253–265 (1987)

    Article  MathSciNet  Google Scholar 

  14. Li, G., Qing, J., Shi, Y.: Gap phenomena and curvature estimates for conformally compact Einstein manifolds. Trans. Am. Math. Soc. 369, 4385–4413 (2017)

    Article  MathSciNet  Google Scholar 

  15. Margerin, C.: A sharp characterization of the smooth 4-sphere in curvature terms. Commun. Anal. Geom. 6, 21–65 (1998)

    Article  MathSciNet  Google Scholar 

  16. Page, D.: A compact rotating gravitational instanton. Phy. Lett. B 79, 235–238 (1978)

    Article  Google Scholar 

  17. Poon, Y.S.: Compact self-dual manifolds with positive scalar curvature. J. Differ. Geom. 24, 97–132 (1986)

    Article  MathSciNet  Google Scholar 

  18. Schoen, R.: Variational theory for the total scalar curvature functional for the Riemannian metrics and related topics. In: Giaquinta, M. (ed.) Topics in Calculus of Variations. Lecture Notes in Mathematics, vol. 1365, pp. 120–154. Springer, New York (1989)

    Chapter  Google Scholar 

  19. Tian, G., Viaclovsky, J.: Bach-flat asymptotically locally Euclidean metrics. Invent. Math. 160, 357–415 (2005)

    Article  MathSciNet  Google Scholar 

  20. Tian, G., Viaclovsky, J.: Moduli spaces of critical Riemannian metrics in dimension four. Adv. Math. 196, 346–372 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank his advisor Professor Sun-Yung A. Chang for her constant support. Thanks also to Professor Matthew Gursky for numerous helpful comments and enlightening discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siyi Zhang.

Additional information

Communicated by A. Malchiodi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S. Some conformally invariant gap theorems for Bach-flat 4-manifolds. Calc. Var. 60, 151 (2021). https://doi.org/10.1007/s00526-021-02022-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-02022-5

Mathematics Subject Classification

Navigation