Skip to main content
Log in

Optimization of the principal eigenvalue for elliptic operators

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Maximization and minimization problems of the principle eigenvalue for divergence form second order elliptic operators with the Dirichlet boundary condition are considered. The principal eigen map of such elliptic operators is introduced and some basic properties of this map, including continuity, concavity, and differentiability with respect to the parameter in the diffusibility matrix, are established. For maximization problem, the admissible control set is convexified to get the existence of an optimal convexified relaxed solution. Whereas, for minimization problem, the relaxation of the problem under H-convergence is introduced to get an optimal H-relaxed solution for certain interesting special cases. Some necessary optimality conditions are presented for both problems and a couple of illustrative examples are presented as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Allaire, G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23, 1482–1518 (1992)

    Article  MathSciNet  Google Scholar 

  3. Allaire, G.: Shape Optimization by the Homogenization Method. Springer, New York (2002)

    Book  Google Scholar 

  4. Ansini, N., Dal Maso, G., Zeppieri, C.I.: \(\Gamma \)-convergence and \(H\)-convergence of linear elliptic operators. J. Math. Pures Appl. 99, 321–329 (2013)

    Article  MathSciNet  Google Scholar 

  5. Belhachmi, Z., Bucur, D., Buttazzo, G., Sac-Epee, J.-M.: Shape optimization problems for eigenvalues of elliptic operators. Z. Angew. Math. Mech. 86, 171–184 (2006)

    Article  MathSciNet  Google Scholar 

  6. Bucur, D., Buttazzo, G., Nitsch, C.: Two optimization problems in thermal insulation. Not. AMS 64, 830–835 (2017)

    MathSciNet  MATH  Google Scholar 

  7. Buttazzo, G., Dal Maso, G.: Shape optimization for Dirichlet problems: relax formulation and optimality conditions. Appl. Math. Optim. 23, 17–49 (1991)

    Article  MathSciNet  Google Scholar 

  8. Casado-Diaz, J.: Smoothness properties for the optimal mixture of two isotropic materials: the compliance and eigenvalue problems. SIAM J. Control Optim. 53, 2319–2349 (2015)

    Article  MathSciNet  Google Scholar 

  9. Casado-Diaz, J., Couce-Calvo, J., Martin-Gomez, J.D.: Relaxation of a control problem in the coefficients with a functional of quadratic growth in the gradient. SIAM J. Control Optim. 47, 1428–1459 (2008)

    Article  MathSciNet  Google Scholar 

  10. Caffarelli, L.A., Lin, F.H.: An optimal partition problem for eigenvalues. J. Sci. Comput. 31, 5–18 (2007)

    Article  MathSciNet  Google Scholar 

  11. Cherkaev, A.: Variational Methods for Structural Optimization. Springer, New York (2000)

    Book  Google Scholar 

  12. Cox, S.J., Kawohl, B., Uhlig, P.X.: On the optimal insulation of conductors. J. Optim. Theory Appl. 100, 253–263 (1999)

    Article  MathSciNet  Google Scholar 

  13. Cox, S.J., McLaughlin, J.R.: Extremal eigenvalue problems for composite membranes, I. II. Appl. Math. Optim. 22(153–167), 169–187 (1990)

    Article  MathSciNet  Google Scholar 

  14. Cuccu, F., Emamizadeh, B., Porru, G.: Optimization of the first eigenvlue in problems involving the \(p\)-Laplacian. Proc. AMS 137, 1677–1687 (2009)

    Article  Google Scholar 

  15. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin (1998).. (Theorem 8.38)

  16. Gallouet, T., Monier, A.: On the regularity of solutions to elliptic equations. Rend. Mat. Appl. 19, 471–488 (2000)

    MathSciNet  MATH  Google Scholar 

  17. Gustafsson, B., Mossino, J.: A note on \(H\)-convergene, arXiv: math/0608286v1, 11 (2006)

  18. Henrot, A.: Extremum Problems for Eigenvalues of Elliptic Operators. Birkhäuser, Boston (2006)

    Book  Google Scholar 

  19. Húska, J., Polácik, P., Safonov, M.V.: Principal eigenvalues, spectral gaps and exponential separation between positive and sign-changing solutions of parabolic equations. Dis. Contin. Dyn. Syst. 2005(suppl), 427–435 (2005)

    MathSciNet  MATH  Google Scholar 

  20. Li, B., Lou, H.: Cesari-type conditions for semilinear elliptic equations with leading term containing controls. Math. Control Relat. Fields 1, 41–59 (2011)

    Article  MathSciNet  Google Scholar 

  21. Li, B., Lou, H., Xu, Y.: Relaxation of optimal control problem governed by semilinear elliptic equation with leading term containing controls. Acta Appl. Math. 130, 205–236 (2014)

    Article  MathSciNet  Google Scholar 

  22. Li, X., Yong, J.: Optimal Control Theory for Infinite Dimensional Systems. Birkhäuser, Boston (1995)

    Book  Google Scholar 

  23. Lou, H.: Optimality conditions for semilinear parabolic equations with controls in leading term. ESAIM Control Optim. Calc. Var. 17, 975–994 (2011)

    Article  MathSciNet  Google Scholar 

  24. Lou, H., Yong, J.: Optimality conditions for semilinear elliptic equations with leading term containing controls. SIAM J. Control Optim. 48, 2366–2387 (2009)

    Article  MathSciNet  Google Scholar 

  25. Lou, H., Yong, J.: Second-order necessary conditions for optimal control of semilinear elliptic equations with leading term containing controls. Math. Control Relat. Fields 8, 57–88 (2018)

    Article  MathSciNet  Google Scholar 

  26. Meyers, N.G.: An \(L^p\)-estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Scuola Norm. Sup. Pisa 17, 189–206 (1963)

    MathSciNet  MATH  Google Scholar 

  27. Münch, A., Pedregal, P., Periago, F.: Relaxation of an optimal design problem for the heat equation. J. Math. Pures Appl. 89, 225–247 (2008)

    Article  MathSciNet  Google Scholar 

  28. Murat, F., Tartar, L.: On the control of coefficients in partial differential equations. In: Cherkaev, A., Kohn, R. (eds.) Topics in the Mathematical Modelling of Composite Materials, pp. 1–8. Birkhäuser, Boston (1997) . (Originally published in Lecture Notes in Econmics and Mathematical Systems Modelling, Springer-Verlag, 420–426 (1975))

  29. Murat, F., Tartar, L.: \(H\)-convergence. In: Cherkaev, A., Kohn, R. (eds.) Topics in the Mathematical Modelling of Composite Materials, pp. 21–43. Birkhäuser, Boston (1997) . (Originally published in Sémiar d’Analyse Fonctionelle et Numéraique de l’Universit/’e d’Alger, (1977))

  30. Murat, F., Tartar, L.: Calculus of variations and homogenization. In: Cherkaev, A., Kohn, R. (eds.) Topics in the Mathematical Modelling of Composite Materials, pp. 139–173. Birkhäuser, Boston (1997) . (Originally published in Eyrolles, 319–369 (1985))

  31. Spagnolo, S.: Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche. Ann. Sc. Norm. Sup. Pisa 22, 571–597 (1968) (In Italian)

  32. Tartar, L.: Queleques remarques sur l’homog/’en/’eisation. In: Proceedings of the Japan–France Seminar. “Functional Analysis and Numerical Analysis", Japan Society for the Promotion of Sciences, pp. 469–482 (1976)

  33. Tartar, L.: Estimations of homogenized coefficients. In: Cherkaev, A., Kohn, R. (eds.) Topics in the Mathematical Modelling of Composite Materials, pp. 9–20. Birkhäuser, Boston (1997) . (Originally published in Computing Methods in Applied Sciences and Engineering, Lecture Notes in Math. 704, Springer-Verlag, 364–373 (1977))

  34. Vrdoljak, M.: Classical optimal design in two-phase conductivity problems. SIAM J. Control Optim. 54, 2020–2035 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee for his/her comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiongmin Yong.

Additional information

Communicated by F. H. Lin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported in part by NSFC Grant 11771097 and by NSF Grant DMS-1812921.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, H., Yong, J. Optimization of the principal eigenvalue for elliptic operators. Calc. Var. 60, 139 (2021). https://doi.org/10.1007/s00526-021-02011-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-02011-8

Mathematics Subject Classification

Navigation