Skip to main content
Log in

Symmetry of positive solutions of elliptic equations with mixed boundary conditions in a super-spherical sector

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper we establish some symmetry results for positive solutions of semilinear elliptic equations with mixed boundary conditions. In particular, we show that the positive solution in a super-spherical sector must be symmetric. The monotonicity property is also proved. Our proof is based on the well-known moving plane methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aleksandrov, A.: Uniqueness theorem for surfaces in the large I. Vestnik Leningrad Univ. 11(19), 5–17 (1956). (Russian)

    MathSciNet  Google Scholar 

  2. Berestycki, H., Caffarelli, L., Nirenberg, L.: Monotonicity for elliptic equations in unbounded Lipschitz domains. Commun. Pure Appl. Math. 50(11), 1089–1111 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berestycki, H., Caffarelli, L., Nirenberg, L.: Further qualitative properties for elliptic equations in unbounded domains. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 25((1–2)), 69–94 (1997)

    MathSciNet  MATH  Google Scholar 

  4. Berestycki, H., Nirenberg, L.: On the method of moving planes and the sliding method. Bol. Soc. Brasil. Mat. (N.S.) 22(1), 1–37 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berestycki, H., Nirenberg, L., Varadhan, S.S.: The principal eigenvalue and maximum principle for second-order elliptic operators in general domains. Commun. Pure Appl. Math. 47(1), 47–92 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berestycki, H., Pacella, F.: Symmetry properties for positive solutions of elliptic equations with mixed boundary conditions. J. Funct. Anal. 87(1), 177–211 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Caffarelli, L.A., Gidas, B., Spruck, J.: Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Commun. Pure Appl. Math. 42(3), 271–297 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, H., Li, R., Yao, R.: Symmetry of positive solutions of elliptic equations with mixed boundary conditions in a sub-spherical sector, Submitted to Nonlinearity

  9. Chen, H., Yao, R.: Symmetry and monotonicity of positive solution of elliptic equation with mixed boundary condition in a spherical cone. J. Math. Anal. Appl. 461(1), 641–656 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, W., Li, C.: Classification of solutions of some nonlinear elliptic equations. Duke Math. J. 63(3), 615–622 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, W., Li, C.: Qualitative properties of solutions to some nonlinear elliptic equations in \(\mathbb{R}^{2}\). Duke Math. J. 71(2), 427–439 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chern, J.-L., Lin, C.-S.: The symmetry of least-energy solutions for semilinear elliptic equations. J. Differ. Equ. 187(2), 240–268 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chu, C.-P., Wang, H.-C.: Symmetry properties of positive solutions of elliptic equations in an infinite sectorial cone. Proc. R. Soc. Edinburgh Sect. A 122(1–2), 137–160 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Damascelli, L., Pacella, F.: Morse index and symmetry for elliptic problems with nonlinear mixed boundary conditions. Proc. R. Soc. Edinburgh Sect. A 149(2), 305–324 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. del Pino, M., Felmer, P.L., Wei, J.: Multi-peak solutions for some singular perturbation problems. Calc. Var. Partial Differ. Equ. 10(2), 119–134 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Farina, A., Valdinoci, E.: On partially and globally overdetermined problems of elliptic type. Am. J. Math. 135(6), 1699–1726 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gidas, B., Ni, W.-M., Nirenberg, L.: Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68(3), 209–243 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gidas, B., Ni, W.-M., Nirenberg, L.: Symmetry of positive solutions of nonlinear elliptic equations in \({R }^{N}\). Adv. Math. Suppl. Stud. A 7, 369–402 (1981)

    MATH  Google Scholar 

  19. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  20. Gui, C.: Multipeak solutions for a semilinear Neumann problem. Duke Math. J. 84(3), 739–769 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gui, C.: Symmetry of some entire solutions to the Allen-Cahn equation in two dimensions. J. Differ. Equ. 252(11), 5853–5874 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gui, C., Ghoussoub, N.: Multi-peak solutions for a semilinear Neumann problem involving the critical Sobolev exponent. Math. Z. 229(3), 443–474 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gui, C., Lin, C.-S.: Estimates for boundary-bubbling solutions to an elliptic Neumann problem. J. Reine Angew. Math. 546, 201–235 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gui, C., Wei, J.: Multiple interior peak solutions for some singularly perturbed Neumann problems. J. Differ. Equ. 158(1), 1–27 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gui, C., Wei, J.: On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems. Canad. J. Math. 52(3), 522–538 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gui, C., Wei, J., Winter, M.: Multiple boundary peak solutions for some singularly perturbed Neumann problems. Ann. Inst. H Poincare Anal. Non Lineaire 17(1), 47–82 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, C.: Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on unbounded domains. Commun. Partial Differ. Equ. 16(4–5), 585–615 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, Y., Ni, W.-M.: Radial symmetry of positive solutions of nonlinear elliptic equations in \(\mathbb{R}^{n}\). Commun. Partial Differ. Equ. 18(5–6), 1043–1054 (1993)

    Article  MATH  Google Scholar 

  29. Lin, C.-S.: Locating the peaks of solutions via the maximum principle: I. The Neumann problem. Commun. Pure Appl. Math. 54(9), 1065–1095 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Montefusco, E.: Axial symmetry of solutions to semlinear elliptic equations in unbounded domains. Proc. R. Soc. Edinburgh Sect. A 133(5), 1175–1192 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ni, W.-M., Takagi, I.: On the shape of least-energy solutions to a semilinear Neumann problem. Commun. Pure Appl. Math. 44(7), 819–851 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ni, W.-M., Takagi, I.: Locating the peaks of least-energy solutions to a semilinear Neumann problem. Duke Math. J. 70(2), 247–281 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ni, W.-M., Wei, J.: On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems. Commun. Pure Appl. Math. 48(7), 731–768 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  34. Pacella, F.: Symmetry results for solutions of semilinear elliptic equations with convex nonlinearities. J. Funct. Anal. 192(1), 271–282 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. Pacella, F., Weth, T.: Symmetry of solutions to semilinear elliptic equations via Morse index. Proc. Am. Math. Soc. 135(6), 1753–1762 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  37. Serrin, J.: A symmetry problem in potential theory. Arch. Rational Mech. Anal. 43(4), 304–318 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  38. Shi, X., Gu, Y., Chen, J.: Symmetry and monotonicity of positive solutions of systems of semilinear elliptic equations. Acta Math. Sci. 17(1), 1–9 (1997). (Chinese)

    MathSciNet  MATH  Google Scholar 

  39. Wei, J.: On the interior spike layer solutions to a singularly perturbed Neumann problem. Tohoku Math. J. 50(2), 159–178 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wei, J., Winter, M.: Symmetry of nodal solutions for singularly perturbed elliptic problems on a ball. Indiana Univ. Math. 707–741, 159 (2005)

    MathSciNet  MATH  Google Scholar 

  41. Yao, R., Chen, H., Li, Y.: Symmetry and monotonicity of positive solutions of elliptic equations with mixed boundary conditions in a super-spherical cone. Calc. Var. Partial Differ. Equ. 57(6), 154 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhu, M.: Symmetry properties for positive solutions to some elliptic equations in sector domains with large amplitude. J. Math. Anal. Appl. 261(2), 733–740 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the anonymous referee for careful reading and helpful suggestions which led to improvements of our original manuscript. The first author is supported by the Natural Science Foundation of China (Grant No. 12001543).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changfeng Gui.

Additional information

Communicated by O. Savin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, R., Chen, H. & Gui, C. Symmetry of positive solutions of elliptic equations with mixed boundary conditions in a super-spherical sector. Calc. Var. 60, 130 (2021). https://doi.org/10.1007/s00526-021-01999-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-01999-3

Mathematics Subject Classification

Navigation