Skip to main content

Existence and uniqueness of bounded stable solutions to the Peierls–Nabarro model for curved dislocations


We study the well-posedness of the vector-field Peierls–Nabarro model for curved dislocations with a double well potential and a bi-states limit at far field. Using the Dirichlet to Neumann map, the 3D Peierls–Nabarro model is reduced to a nonlocal scalar Ginzburg–Landau equation. We derive an integral formulation of the nonlocal operator, whose kernel is anisotropic and positive when Poisson’s ratio \(\nu \in (-{\frac{1}{2}}, {\frac{1}{3}})\). We then prove that any bounded stable solution to this nonlocal scalar Ginzburg–Landau equation has a 1D profile, which corresponds to the PDE version of flatness result for minimal surfaces with anisotropic nonlocal perimeter. Based on this, we finally obtain that steady states to the nonlocal scalar equation, as well as the original Peierls–Nabarro model, can be characterized as a one-parameter family of straight dislocation solutions to a rescaled 1D Ginzburg–Landau equation with the half Laplacian.

This is a preview of subscription content, access via your institution.


  1. 1.

    Bass, R.F.: Regularity results for stable-like operators. J. Funct. Anal. 257(8), 2693–2722 (2009)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Cabré, X., Sire, Y.: Nonlinear equations for fractional laplacians II: existence, uniqueness, and qualitative properties of solutions. Trans. Am. Math. Soc. 367, 911–941 (2015)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Cabré, X., Cinti, E.: Energy estimates and 1-D symmetry for nonlinear equations involving the half-laplacian. Discrete Continuous Dyn. Syst. A 28(3), 1179–1206 (2010)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Cabré, X., Cinti, E.: Sharp energy estimates for nonlinear fractional diffusion equations. Calc. Var. Partial. Differ. Equ. 49(1–2), 233–269 (2014)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Cabré, X., Solà-Morales, J.: Layer solutions in a half-space for boundary reactions. Commun. Pure Appl. Math. 58(12), 1678–1732 (2005)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Cinti, E., Serra, J., Valdinoci, E.: Quantitative flatness results and \(BV\)-estimates for stable nonlocal minimal surfaces. J. Differ. Geom. 112(3), 447–504 (2019)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Dipierro, S., Serra, J., Valdinoci, E.: Nonlocal phase transitions: rigidity results and anisotropic geometry (2016). arXiv preprint arXiv:1611.03246

  8. 8.

    Dipierro, S., Serra, J., Valdinoci, E.: Improvement of flatness for nonlocal phase transitions. Am. J. Math. 142(4), 1083–1160 (2020)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Dong, H., Kim, D.: Schauder estimates for a class of non-local elliptic equations. Discrete Continuous Dyn. Syst. A 33(6), 2319–2347 (2013)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Figalli, A., Serra, J.: On stable solutions for boundary reactions: a De Giorgi-type result in dimension 4 + 1. Inventiones Math. 219(1), 153–177 (2020)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Gao, Y., Liu, J.-G.: Long time behavior of dynamic solution to Peierls–Nabarro dislocation model. Methods Appl. Anal. 27(2), 161–198 (2020)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Gao, Y., Liu, J.-G., Luo, T., Xiang, Y.: Revisit of the Peierls–Nabarro model for edge dislocations in hilbert space. To appear in Discrete & Continuous Dynamical Systems - B.

  13. 13.

    Gui, C., Li, Q.: Some energy estimates for stable solutions to fractional Allen–Cahn equations. Calc. Var. Partial. Differ. Equ. 59(2), 49 (2020)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Hirth, J.P., Lothe, J.: Theory of Dislocations, 2nd edn. Wiley, New York (1982)

    MATH  Google Scholar 

  15. 15.

    Nabarro, F.R.N.: Dislocations in a simple cubic lattice. Proc. Phys. Soc. 59, 256–272 (1947)

    Article  Google Scholar 

  16. 16.

    Palatucci, G., Savin, O., Valdinoci, E.: Local and global minimizers for a variational energy involving a fractional norm. Annali di Matematica 192(4), 673–718 (2013)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Peierls, R.: The size of a dislocation. Proc. Phys. Soc. 52, 34–37 (1940)

    Article  Google Scholar 

  18. 18.

    Savin, O.: Rigidity of minimizers in nonlocal phase transitions. Anal. PDE 11(8), 1881–1900 (2018)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Xiang, Y., Wei, H., Ming, P., Weinan, E.: A generalized Peierls–Nabarro model for curved dislocations and core structures of dislocation loops in al and cu. Acta Mater. 56, 1447–1460 (2008)

    Article  Google Scholar 

  20. 20.

    Xiang, Y.: Modeling dislocations at different scales. Commun. Comput. Phys. 1(3), 383–424 (2006)

    MATH  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Yuan Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by O.Savin.



A Derivation of Euler–Lagrange equation

Proof of Lemma 2.1

From Definition 1 of local minimizers, we calculate the variation of the energy in terms of a perturbation with compact support in an arbitrary ball \({B_R}\). For any \( {\mathbf {v}}\in C^\infty (B_R\backslash \Gamma )\) such that \( {\mathbf {v}}\) has compact support in \({B_R}\) and satisfies (2.5), we consider the perturbation \(\delta {\mathbf {v}}\), where \(\delta \) is a small real number. We denote \(\varepsilon :=\varepsilon ({\mathbf {u}})\), \(\sigma :=\sigma ({\mathbf {u}})\) and \(\varepsilon _{1}:=\varepsilon (\mathbf{v})\), \(\sigma _{1}:=\sigma ({\mathbf {v}})\). Then we have that

$$\begin{aligned} \begin{aligned}&\lim _{\delta \rightarrow 0}\frac{1}{\delta } (E({\mathbf {u}}+\delta {\mathbf {v}})-E({\mathbf {u}}))\\&\quad = \int _{B_R\backslash \Gamma }\frac{1}{2}(\sigma _{1}:\varepsilon + \sigma :\varepsilon _{1})\,\mathrm {d}x +\int _{{B_R}\cap \Gamma } \partial _{1}W(u_{1}^{+}, u_{2}^{+})v_{1}^{+}+ \partial _{2} W(u_{1}^{+}, u_{2}^{+}) v_{2}^{+} \,\mathrm {d}\Gamma \\&\quad =\int _{{B_R}\backslash \Gamma }\sigma :\varepsilon _{1}\,\mathrm {d}x +\int _{{B_R}\cap \Gamma } \partial _{1}W(u_{1}^{+}, u_{2}^{+})v_{1}^{+}+ \partial _{2} W(u_{1}^{+}, u_{2}^{+}) v_{2}^{+} \,\mathrm {d}\Gamma \\&\quad =\int _{B_R\backslash \Gamma }\sigma :\nabla {\mathbf {v}}\,\mathrm {d}x +\int _{B_R\cap \Gamma } \partial _{1}W(u_{1}^{+}, u_{2}^{+})v_{1}^{+}+ \partial _{2} W(u_{1}^{+}, u_{2}^{+}) v_{2}^{+} \,\mathrm {d}\Gamma \\&\quad =-\int _{B_R\backslash \Gamma }\partial _j\sigma _{ij} v_i\,\mathrm {d}x +\int _{B_R\cap \Gamma }\sigma _{ij}^{+} n_j^{+} v_i^{+} \,\mathrm {d}\Gamma \\&\qquad + \int _{B_R\cap \Gamma }\sigma _{ij}^{-} n_j^{-} v_i^{-} \,\mathrm {d}\Gamma +\int _{B_R\cap \Gamma }\partial _{1}W(u_{1}^{+}, u_{2}^{+})v_{1}^{+}+ \partial _{2} W(u_{1}^{+}, u_{2}^{+}) v_{2}^{+} \,\mathrm {d}\Gamma \ge 0, \end{aligned} \end{aligned}$$

where we used the property that \(\sigma \) and \(\nabla \cdot \sigma \) are locally integrable in \(\{x_{3}>0\}\cup \{x_{3}<0\}\) when carrying out the integration by parts, and the outer normal vector of the boundary \(\Gamma \) is \({\mathbf {n}}^{+}\) (resp. \({\mathbf {n}}^{-}\)) for the upper half-plane (resp. lower half-plane). Similarly, taking perturbation as \(-{\mathbf {v}}\), we have

$$\begin{aligned} \begin{aligned}&\lim _{\delta \rightarrow 0}\frac{1}{\delta } (E({\mathbf {u}}-\delta {\mathbf {v}})-E({\mathbf {u}}))\\&\quad =\int _{B_R\backslash \Gamma }\partial _j\sigma _{ij} v_i\,\mathrm {d}x -\int _{B_R\cap \Gamma }\sigma _{ij}^{+} n_j^{+} v_i^{+} \,\mathrm {d}\Gamma \\&\qquad - \int _{B_R\cap \Gamma }\sigma _{ij}^{-} n_j^{-} v_i^{-} \,\mathrm {d}\Gamma -\int _{B_R\cap \Gamma } \partial _{1}W(u_{1}^{+}, u_{2}^{+})v_{1}^{+}+ \partial _{2} W(u_{1}^{+}, u_{2}^{+}) v_{2}^{+} \ge 0. \end{aligned} \end{aligned}$$


$$\begin{aligned}&-\int _{B_R\backslash \Gamma }\partial _j\sigma _{ij} v_i\,\mathrm {d}x +\int _{B_R\cap \Gamma }\sigma _{ij}^{+} n_j^{+} v_i^{+} \,\mathrm {d}\Gamma \\&\quad + \int _{B_R\cap \Gamma }\sigma _{ij}^{-} n_j^{-} v_i^{-} \,\mathrm {d}x \,\mathrm {d}z +\int _{B_R\cap \Gamma }\partial _{1}W(u_{1}^{+}, u_{2}^{+})v_{1}^{+}+ \partial _{2} W(u_{1}^{+}, u_{2}^{+}) v_{2}^{+} \,\mathrm {d}\Gamma = 0. \end{aligned}$$

Noticing that \({\mathbf {n}}^{+}=(0,0,-1)\) and \({\mathbf {n}}^{-}=(0,0,1)\), we have

$$\begin{aligned} \begin{aligned}&\int _{B_R\cap \Gamma }\sigma _{ij}^{+} n_j^{+} v_i^{+} \,\mathrm {d}\Gamma + \int _{B_R\cap \Gamma }\sigma _{ij}^{-} n_j^{-} v_i^{-} \,\mathrm {d}\Gamma \\&\quad = \int _{B_R\cap \Gamma }-\sigma _{33}^{+} v_{3}^{+} \,\mathrm {d}x \,\mathrm {d}z+ \int _{B_R\cap \Gamma }\sigma _{33}^{-} v_{3}^{-} \,\mathrm {d}\Gamma + \int _{B_R\cap \Gamma }-\sigma _{13}^{+} v_{1}^{+} \,\mathrm {d}\Gamma + \int _{B_R\cap \Gamma }\sigma _{13}^{-} v_{1}^{-} \,\mathrm {d}\Gamma \\&\qquad + \int _{B_R\cap \Gamma }-\sigma _{23}^{+} v_{2}^{+} \,\mathrm {d}\Gamma + \int _{B_R\cap \Gamma }\sigma _{23}^{-} v_{2}^{-} \,\mathrm {d}\Gamma . \end{aligned} \end{aligned}$$

Recall that \(v_{1}^{+}=-v_{1}^{-}\), \(v_{3}^{+}=v_{3}^{-}\) and \(v_{2}^{+}=-v_{2}^{-}\). Hence due to the arbitrariness of R, we conclude that the minimizer \({\mathbf {u}}\) must satisfy

$$\begin{aligned} \begin{aligned}&\int _{\Gamma }\left[ \sigma _{13}^{+} + \sigma _{13}^{-} -\partial _{1}W (u_{1}^{+}, u_{2}^{+})\right] v_{1}^{+} \,\mathrm {d}\Gamma =0,\\&\quad \int _{\Gamma }\left[ \sigma _{23}^{+} + \sigma _{23}^{-} -\partial _{2}W (u_{1}^{+}, u_{2}^{+})\right] v_{2}^{+} \,\mathrm {d}\Gamma =0,\\&\quad \int _\Gamma \left( \sigma _{33}^{+}-\sigma _{33}^{-}\right) v_{3}^{+} \,\mathrm {d}\Gamma =0,\\&\quad \int _{{\mathbb {R}}^2\backslash \Gamma } (\nabla \cdot \sigma ) \cdot {\mathbf {v}}~ \,\mathrm {d}x\,\mathrm {d}y \,\mathrm {d}z =0 \end{aligned} \end{aligned}$$

for any \({\mathbf {v}}\in C^\infty (B_R\backslash \Gamma )\) and \( \mathbf{v}\) has compact support in \(B_R\), which leads to the Euler–Lagrange equation (2.6). Here we write the equation \(\nabla \cdot \sigma =0\) in \({\mathbb {R}}^2 \backslash \Gamma \) as the first equation of (2.6) in terms of the displacement \({\mathbf {u}}\), using the constitutive relation. \(\square \)

B Dirichlet to Neumann map

Proof of Lemma 2.2

Step 1. We take the Fourier transform of the elastic equations in (2.6) with respect to \(x_{1},x_{2}\) and denote the corresponding Fourier variables as \(k_{1}, k_{2}\).

Due to (2.3), \({\mathbf {u}}\) is unbounded and we take the Fourier transform for \({\mathbf {u}}\) with respect to \(x_{1}, x_{2}\) by regarding them as tempered distributions. For notation simplicity, denote the Fourier transforms to be \(\hat{{\mathbf {u}}}\). Let \(k=(k_{1}, k_{2})\) and \(|k|=\sqrt{k^2_{1}+k^2_{2}}\). We have

$$\begin{aligned}&(1-2\nu ) \partial _{33} {\hat{u}}_{1} - [(2-2\nu )k_{1}^2 + (1-2\nu )k_{2}^2] {\hat{u}}_{1} + i k_{1} \partial _{3} {\hat{u}}_{3} - k_{1} k_{2} {\hat{u}}_{2} = 0, \end{aligned}$$
$$\begin{aligned}&(2-2\nu )\partial _{33}{\hat{u}}_{3} - (1-2\nu )|k|^2{\hat{u}}_{3} + i k_{1} \partial _{3} {\hat{u}}_{1} + ik_{2} \partial _{3} {\hat{u}}_{2} = 0, \end{aligned}$$
$$\begin{aligned}&(1-2\nu ) \partial _{33} {\hat{u}}_{2} - [(2-2\nu )k_{2}^2 + (1-2\nu )k_{1}^2] {\hat{u}}_{2} + i k_{2} \partial _{3} {\hat{u}}_{3} - k_{1} k_{2} {\hat{u}}_{1} = 0. \end{aligned}$$

We can first eliminate \({\hat{u}}_{2}\) using (B.1), then eliminate \({\hat{u}}_{3}\) and obtain the ODE for \({\hat{u}}_{1}\)

$$\begin{aligned} \partial _{3}^4 {\hat{u}}_{1} - 2 |k|^2 \partial _{3}^2 {\hat{u}}_{1}+ |k|^4 {\hat{u}}_{1}=0. \end{aligned}$$

Next we use this ODE for \({\hat{u}}_{1}\) to simplify (B.1), (B.2), and (B.3) again and then eliminate \({\hat{u}}_{1}\) and \({\hat{u}}_{2}\) together. We obtain the ODE for \({\hat{u}}_{3}\)

$$\begin{aligned} \partial _{3}^4 {\hat{u}}_{3} - 2|k|^2 \partial _{3}^2 {\hat{u}}_{3} +|k|^4 {\hat{u}}_{3} = 0. \end{aligned}$$

By the symmetry of \({\hat{u}}_{1}\) and \({\hat{u}}_{2}\), we have the same ODE for \({\hat{u}}_{2}\).

We look for solutions whose derivatives have decay properties, which exclude exponentially growing solutions as \(|x_{3}|\rightarrow +\infty \). Denote

$$\begin{aligned} {\hat{u}}_{1}^{-} = (A^{-} + B^{-}|k| x_{3})e^{|k|x_{3}}, \quad x_{3}<0, \end{aligned}$$

where \(A^{-}, B^{-}\) are constants to be determined. Similarly, denote

$$\begin{aligned} {\hat{u}}_{3}^{-} = (C^{-} + D^{-}|k| x_{3})e^{|k|x_{3}}, \quad {\hat{u}}_{2}^{-} = (E^{-} + F^{-} x_{3}|k|)e^{|k|x_{3}}, \quad x_{3}<0, \end{aligned}$$

where \(C^{-}, D^{-}, E^{-}, F^{-}\) are constants to be determined. For \(x_{3}>0\), we have another six constants \(A^{+}, B^{+}, C^{+}, D^{+}, E^{+}, F^{+}\) to be determined and for \(x_{3}>0\),

$$\begin{aligned} \begin{aligned} {\hat{u}}_{1}^{+}&= (A^{+} - B^{+}|k| x_{3})e^{-|k|x_{3}}, \\ {\hat{u}}_{3}^{+}&= (C^{+} - D^{+} |k|x_{3})e^{-|k|x_{3}}, \\ {\hat{u}}_{2}^{+}&= (E^{+} - F^{+} |k|x_{3})e^{-|k|x_{3}}. \end{aligned} \end{aligned}$$

Step 2. Given the Dirichlet values of \(u_{1}\) and \(u_{2}\), we express all the other constants by \(A^\pm \) and \(E^\pm \).

First, plugging \({\hat{u}}_{1}^{-}\), \({\hat{u}}_{2}^{-}\), and \({\hat{u}}_{3}^{-}\) into (B.1), we have

$$\begin{aligned} (2-4\nu )|k|^2B^{-} - k_{1}^2 A^{-} + i k_{1} (C^{-}|k|+ D^{-} |k|)- k_{1} k_{2} E^{-}=0 \end{aligned}$$


$$\begin{aligned} -k_{1}^{2} B^{-}+i k_{1} D^{-}|k|-k_{1} k_{2} F^{-}=0. \end{aligned}$$

Plugging \({\hat{u}}_{1}^{-}\), \({\hat{u}}_{2}^{-}\), and \({\hat{u}}_{3}^{-}\) into (B.2), we have

$$\begin{aligned} |k|^{2} C^{-}+(4-4\nu )|k|^{2} D^{-}+i k_{1}|k| A^{-}+i k_{1}|k| B^{-}+i k_{2}|k| E^{-}+i k_{2}|k| F^{-}=0 \end{aligned}$$


$$\begin{aligned} |k|^2 D^{-} + i k_{1} |k|B^{-} + i k_{2} |k|F^{-} =0. \end{aligned}$$

Plugging \({\hat{u}}_{1}^{-}\), \({\hat{u}}_{2}^{-}\), and \({\hat{u}}_{3}^{-}\) into (B.3), we have

$$\begin{aligned} (2-4\nu )|k|^2F^{-} - k_{2}^2 E^{-} + i k_{2} (C^{-}|k|+ D^{-} |k|)- k_{1} k_{2} A^{-}=0 \end{aligned}$$


$$\begin{aligned} -k_{2}^{2} F^{-}+i k_{2} D^{-}|k|-k_{1} k_{2} B^{-}=0. \end{aligned}$$

Simplifying these relations gives us

$$\begin{aligned} \begin{aligned}&{B^{-}=\frac{i k_{1}}{|k|} D^{-}} ,\quad {F^{-}=\frac{i k_{2}}{|k|} D^{-}}, \\&{-k_{1} A^{-}-k_{2} E^{-}+i|k| C^{-}=(4 \nu -3) i|k| D^{-}.} \end{aligned} \end{aligned}$$

Combining this with the boundary symmetry (2.2), we have

$$\begin{aligned} A^{+} = - A^{-}, \ \ B^{+} = -B^{-},\ \ C^{+}= C^{-},\ \ D^{+}= D^{-},\ \ E^{+} = -E^{-}, \ \ F^{+}= -F^{-}. \end{aligned}$$

Then by \(\sigma _{33}^{+}= \sigma _{33}^{-}\) on \(\Gamma \) in (2.6), we further obtain \(C^{-}= (2\nu -1)D^{-}\). Therefore, all the other constants can be expressed in terms of \(A^{-}\) and \(E^{-}\). In particular, we conclude that \(\sigma _{13}(x_{1},x_{2}, 0^{+})\) and \(\sigma _{23}(x_{1},x_{2}, 0^{+})\) can be expressed as in (2.7). \(\square \)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dong, H., Gao, Y. Existence and uniqueness of bounded stable solutions to the Peierls–Nabarro model for curved dislocations. Calc. Var. 60, 62 (2021).

Download citation

Mathematics Subject Classification

  • 35A02
  • 35J50
  • 35Q74
  • 35R11
  • 35J60