Skip to main content

Uniform \(W^{1,p}\) estimates for an elliptic operator with Robin boundary condition in a \(\mathcal {C}^1\) domain


We consider the Robin boundary value problem \({\mathrm {div}}\,(A\nabla u) = {\mathrm {div}}\,\varvec{f}+F\) in \(\Omega \), a \(C^1\) domain, with \((A\nabla u - \varvec{f})\cdot {\varvec{n}}+ \alpha u = g\) on \(\Gamma \), where the matrix A belongs to \(VMO ({\mathbb {R}}^3) \), and discover the uniform estimates on \(\Vert u\Vert _{W^{1,p}(\Omega )}\), with \(1< p < \infty \), independent of \(\alpha \). At the difference with the case \(p = 2,\) which is simpler, we call here the weak reverse Hölder inequality. This estimates show that the solution of the Robin problem converges strongly to the solution of the Dirichlet (resp. Neumann) problem in corresponding spaces when the parameter \(\alpha \) tends to \(\infty \) (resp. 0).

This is a preview of subscription content, access via your institution.


  1. Amrouche, C., Ghosh, A., Conca, C., Acevedo, P.: Stokes and Navier–Stokes equations with Navier boundary condition. C. R. Math. 357, 115–119 (2019)

    MathSciNet  MATH  Google Scholar 

  2. Auscher, P., Qafsaoui, M.: Observations on \(W^{1,p}\) estimates for divergence elliptic equations with VMO coefficients. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 5(2), 487–509 (2002)

    MathSciNet  MATH  Google Scholar 

  3. Caffarelli, L.A., Peral, I.: On \(W^{1, p}\) estimates for elliptic equations in divergence form. Commun. Pure Appl. Math. 51(1), 1–21 (1998)

    MATH  Google Scholar 

  4. Daners, D.: Robin boundary value problems on arbitrary domains. Trans. Am. Math. Soc. 352(9), 4207–4236 (2000)

    MathSciNet  MATH  Google Scholar 

  5. Dong, H., Kim, D.: Elliptic equations in divergence form with partially BMO coefficients. Arch. Ration. Mech. Anal. 196(1), 25–70 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Gehring, F.W.: The Lp-integrability of the partial derivatives of a quasiconformal mapping. Acta Math. 130, 265–277 (1973)

    MathSciNet  MATH  Google Scholar 

  7. Geng, J.: \(W^{1, p}\) estimates for elliptic problems with Neumann boundary conditions in Lipschitz domains. Adv. Math. 229(4), 2427–2448 (2012)

    MathSciNet  MATH  Google Scholar 

  8. Gérard-Varet, D., Masmoudi, N.: Relevance of the slip condition for fluid flows near an irregular boundary. Commun. Math. Phys. 295(1), 99–137 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Giaquinta, M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Annals of Mathematics Studies, vol. 105. Princeton University Press, Princeton (1983)

    MATH  Google Scholar 

  10. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, volume 224 of Fundamental Principles of Mathematical Sciences, 2nd edn. Springer, Berlin (1983)

    MATH  Google Scholar 

  11. Girouard, A., Polterovich, I.: Spectral geometry of the Steklov problem (survey article). J. Spectr. Theory 7(2), 321–359 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Han, Q., Lin, F.: Elliptic Partial Differential Equations, volume 1 of Courant Lecture Notes in Mathematics. American Mathematical Society, Providence (1997)

    Google Scholar 

  13. Jerison, D.S., Kenig, C.E.: The Neumann problem on Lipschitz domains. Bull. Am. Math. Soc. (N.S.) 4(2), 203–207 (1981)

    MathSciNet  MATH  Google Scholar 

  14. Kenig, C.E., Lin, F., Shen, Z.: Homogenization of elliptic systems with Neumann boundary conditions. J. Am. Math. Soc. 26(4), 901–937 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Kristensen, J., Mingione, G.: The singular set of minima of integral functionals. Arch. Ration. Mech. Anal. 180(3), 331–398 (2006)

    MathSciNet  MATH  Google Scholar 

  16. Pal, D., Rudraiah, N., Devanathan, R.: The effects of slip velocity at a membrane surface on blood flow in the microcirculation. J. Math. Biol. 26(6), 705–712 (1988)

    MathSciNet  MATH  Google Scholar 

Download references


The authors would like to thank Karthik Adimurthi for his valuable suggestions and remarks to improve this manuscript. The second author is partially supported by PFBasal-001 and AFBasal170001 projects, and from the Regional Program STIC-AmSud Project NEMBICA-20-STIC-05.

Author information

Authors and Affiliations


Corresponding author

Correspondence to C. Amrouche.

Additional information

Communicated by J.Ball.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Amrouche, C., Conca, C., Ghosh, A. et al. Uniform \(W^{1,p}\) estimates for an elliptic operator with Robin boundary condition in a \(\mathcal {C}^1\) domain. Calc. Var. 59, 71 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:

Mathematics Subject Classification

  • 35J25