Skip to main content
Log in

Abstract

We consider the inverse multiphase Stefan problem with homogeneous Dirichlet boundary condition on a bounded Lipschitz domain, where the density of the heat source is unknown in addition to the temperature and the phase transition boundaries. The variational formulation is pursued in the optimal control framework, where the density of the heat source is a control parameter, and the criteria for optimality is the minimization of the \(L_2\)-norm difference of the trace of the solution to the Stefan problem from a temperature measurement on the whole domain at the final time. The state vector solves the multiphase Stefan problem in a weak formulation, which is equivalent to Dirichlet problem for the quasilinear parabolic PDE with discontinuous coefficient. The optimal control problem is fully discretized using the method of finite differences. We prove the existence of the optimal control and the convergence of the discrete optimal control problems to the original problem both with respect to cost functional and control. In particular, the convergence of the method of finite differences for the weak solution of the multidimensional multiphase Stefan problem is proved. The proofs are based on achieving a uniform \(L_{\infty }\) bound and \(W_2^{1,1}\) energy estimate for the discrete multiphase Stefan problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Abdulla, U.G.: On the optimal control of the free boundary problems for the second order parabolic equations. I. Well-posedness and convergence of the method of lines. Inverse Probl. Imaging 7(2), 307–340 (2013)

    MathSciNet  MATH  Google Scholar 

  2. Abdulla, U.G.: On the optimal control of the free boundary problems for the second order parabolic equations. II. Convergence of the method of finite differences. Inverse Probl. Imaging 10(4), 869–898 (2016)

    MathSciNet  MATH  Google Scholar 

  3. Abdulla, U.G., Goldfarb, J.: Frechet differentiability in Besov spaces in the optimal control of parabolic free boundary problems. Inverse Ill-Posed Prob. 26(2), 211–228 (2018)

    MathSciNet  MATH  Google Scholar 

  4. Abdulla, U.G., Cosgrove, E., Goldfarb, J.: On the Frechet differentiability in optimal control of coefficients in parabolic free boundary problems. Evol. Equ. Control Theory 6(3), 319–344 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Abdulla, U.G., Bukshtynov, V., Hagverdiyev, A.: Gradient method in Hilbert-Besov spaces for the optimal control of parabolic free boundary problems. J. Comput. Appl. Math. 346, 84–109 (2019)

    MathSciNet  MATH  Google Scholar 

  6. Abdulla, U.G., Goldfarb, J., Hagverdiyev, A.: Optimal control of coefficients in parabolic free boundary problems modeling laser ablation. J. Comput. Appl. Math. 372, 112736 (2020)

    MathSciNet  MATH  Google Scholar 

  7. Abdulla, U.G., Poggi, B.: Optimal control of the multiphase Stefan problem. Appl. Math. Optim. 80(2), 479–513 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Abdulla, U.G., Cosgrove, E.: Optimal control of multiphase free boundary problems for nonlinear parabolic equations. Appl. Math. Optim. (2020). https://doi.org/10.1007/s00245-020-09655-6

    Article  Google Scholar 

  9. Alifanov, O.M.: Inverse Heat Transfer Problems. Springer, New York (1995)

    MATH  Google Scholar 

  10. Baumeister, J.: Zur optimal Steuerung von frien Randwertausgaben. ZAMM 60, 335–339 (1980)

    Google Scholar 

  11. Bell, J.B.: The non-characteristic cauchy problem for a class of equations with time dependence. I. Problem in one space dimension. SIAM J. Math. Anal. 12, 759–777 (1981)

    MathSciNet  MATH  Google Scholar 

  12. Bernauer, M., Herzog, R.: Optimal control of the classical two-phase Stefan problem in level set formulation. SIAM J. Sci. Comput. 33(1), 342–363 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Besov, O.V., Il’in, V.P., Nikol’skii, S.M.: Integral Representations of Functions and Embedding Theorems. Winston & Sons, Washington: Wiley (1978)

  14. Budak, B.M., Vasil’eva, V.N.: On the solution of the inverse Stefan problem. Soviet Math. Dokl 13, 811–815 (1972)

    MATH  Google Scholar 

  15. Budak, B.M., Vasil’eva, V.N.: The solution of the inverse Stefan problem. USSR Comput. Maths. Math. Phys 13, 130–151 (1973)

    MathSciNet  MATH  Google Scholar 

  16. Budak, B.M., Vasil’eva, V.N.: On the solution of Stefan’s converse problem II. USSR Comput. Maths. Math. Phys 13, 97–110 (1973)

    MATH  Google Scholar 

  17. Cannon, J.R.: A Cauchy problem for the heat equation. Ann. Math. 66, 155–166 (1964)

    MathSciNet  MATH  Google Scholar 

  18. Cannon, J.R., Douglas, J.: The Cauchy problem for the heat equation. SIAM. J. Numer. Anal 4, 317–336 (1967)

    MathSciNet  MATH  Google Scholar 

  19. Carasso, A.: Determining surface temperatures from interior observations. SIAM J. Appl. Math 42, 558–574 (1982)

    MathSciNet  MATH  Google Scholar 

  20. Dunbar, W.B., Petit, N., Rouchon, P., Martin, P.: Motion planning for a nonlinear Stefan problem. Control Optim. Calc. Var. 9, 275–296 (2003)

    MathSciNet  MATH  Google Scholar 

  21. Ewing, R.E.: The Cauchy problem for a linear parabolic equation. J. Math. Anal. Appl. 71, 167–186 (1970)

    MathSciNet  MATH  Google Scholar 

  22. Ewing, R.E., Falk, R.S.: Numerical approximation of a cauchy problem for a parabolic partial differential equation. Math. Comput. 33, 1125–1144 (1979)

    MathSciNet  MATH  Google Scholar 

  23. Fasano, A., Primicerio, M.: General free boundary problems for heat equations. J. Math. Anal. Appl. 57, 694–723 (1977)

    MathSciNet  MATH  Google Scholar 

  24. Friedman, A.: Variational Principles and Free Boundary Problems. Wiley, New York (1982)

    MATH  Google Scholar 

  25. Gol’dman, N.L.: Inverse Stefan Problems, Mathematics and its Applications, vol. 412, p. viii+250. Kluwer Academic Publishers Group, Dordrecht (1997)

    Google Scholar 

  26. Gol’dman, N.L.: Properties of solutions of the inverse Stefan problem. Differ. Equ. 39, 66–72 (2003)

    MathSciNet  MATH  Google Scholar 

  27. Hinze, M., Ziegenblag, S.: Optimal control of the free boundary in a two-phase Stefan problem. J. Comput. Phys. 223(2), 657–684 (2007)

    MathSciNet  MATH  Google Scholar 

  28. Hinze, M., Ziegenblag, S.: Optimal control of the free boundary in a two-phase Stefan problem with flow driven by convection. ZAMM Z. Angew. Math. Mech. 87(6), 430–448 (2007)

    MathSciNet  MATH  Google Scholar 

  29. Hoffmann, K.-H., Niezgodka, M.: Control of Parabolic Systems Involving Free Boundaries. In: Proceedings of International Conference on Free Boundary Problems (1981)

  30. Hoffmann, K.-H., Sprekels, J.: Real time control of free boundary in a two-phase Stefan problem. Numer. Funct. Anal. Optim. 5, 47–76 (1982)

    MathSciNet  MATH  Google Scholar 

  31. Hoffmann, K.-H., Sprekels, J.: On the identification of heat conductivity and latent heat conductivity ans latent heat in a one-phase Stefan problem. Control Cybern. 15, 37–51 (1986)

    Google Scholar 

  32. Jochum, P.: The inverse Stefan problem as a problem of nonlinear approximation theory. J. Approx. Theorey 30, 81–98 (1980)

    MathSciNet  MATH  Google Scholar 

  33. Jochum, P.: The numerical solution of the inverse Stefan problem. Numer. Math. 34, 411–429 (1980)

    MathSciNet  MATH  Google Scholar 

  34. Kamenomostskaya, S.L.: On Stefan’s Problem, On Stefan’s problem. (Russian) Mat. Sb. (N.S.), 53(95), (1961)

  35. Kang, S., Zabaras, N.: Control of the freezing interface motion in two-dimensional solidification processes using the adjoint method. Int. J. Num. Meth. Eng. 38, 63–80 (1995)

    MATH  Google Scholar 

  36. Knabner, P.: Stability theorems for general free boundary problem of the Stefan type and applications. Meth. Ser. Numer. Meth. Verf. Math. Phys. 25, 95–116 (1983)

    MathSciNet  MATH  Google Scholar 

  37. Krylov, N.V.: Lectures on Elliptic and Parabolic Equations in Sobolev Spaces, Graduate Studies in Mathematics, vol. 96. American Mathematical Society, Providence (2008)

    Google Scholar 

  38. Ladyzenskaya, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasilinear Equations of the Parabolic Type, Translations of Mathematical Monographs, vol. 23. American Mathematical Society, Providence (1967)

    Google Scholar 

  39. Lurye, K.A.: Optimal Control in Problems of Mathematical Physics. Nauka, Moscow (1975)

    Google Scholar 

  40. Meyrmanov, A.M.: The Stefan Problem. Walter de Gruyter, Berlin (1992)

    Google Scholar 

  41. Niezgodka, M.: Control of parabolic systems with free boundaries-application of inverse formulation. Control Cybern. 8, 213–225 (1979)

    MathSciNet  MATH  Google Scholar 

  42. Nikol’skii, S.M.: Approximation of Functions of Several Variables and Imbedding Theorems. Springer, New York (1975)

    Google Scholar 

  43. Nochetto, R.H., Verdi, C.: The combined use of nonlinear Chernoff formula with a regularization procedure for two-phase Stefan problems. Numer. Funct. Anal. and Optimiz., 9:1177–1192 (1987–1988)

  44. Oleinik, O.A.: A method of solution of the general Stefan problem. Doklady Akademii Nauk SSSR 135(5), 1050–1057 (1960)

    MathSciNet  Google Scholar 

  45. Pawlow, I.: Optimal control of two-phase Stefan problems - numerical solution. In: Hoffmann, K.-H., Krabs, W. (eds.) Control of Partial Differential Equations II. Theory and Applications, Birkhäuser (1987)

  46. Pawlow, I.: Optimal control of dynamical processes in two-phase systems of solid–liquid type. Banach Center Publ. 24, 293–319 (1990)

    MathSciNet  MATH  Google Scholar 

  47. Primicero, M.: The occurence of pathologies in some Stefan-like problems. Numerical Treatment of Free Boundary-Value Problems, ISNM pp. 233–244 (1982)

  48. Sagues, C.: Simulation and optimal control of free boundary. In: Numerical Treatment of Free Boundary-Value Problems, ISNM, Vol. 58. pp. 270–287

  49. Sherman, B.: General one-phase Stefan problems and free boundary problems for the heat equation with cauchy data prescribed on the free boundary. SIAM J. Appl. Math. 20, 557–570 (1971)

    MathSciNet  Google Scholar 

  50. Talenti, G., Vessella, S.: A note on an Ill-posed problem for the heat equation. J. Aust. Math. Soc., Ser. A 32, 358–368 (1982)

    MathSciNet  MATH  Google Scholar 

  51. Vasil’ev, F.P.: The existence of a solution of a certain optimal Stefan problem. In Computational Methods and Programming, XII pp. 110–114 (1969) (Russian)

  52. Vasil’ev, F. P.: Methods for Solving Extremal Problems. Minimization problems in function spaces, regularization, approximation(in Russian), Moscow, Nauka (1981)

  53. Yurii, A.D.: On an optimal Stefan problem. Dokl. Akad. Nauk SSSR 251, 1317–1321 (1980)

    MathSciNet  Google Scholar 

  54. Zabaras, N., Mukherjee, S., Richmond, O.: An analysis of inverse heat transfer problems with phase changes using an integral method. J. Heat Transf. ASME 110, 554–561 (1988)

    Google Scholar 

  55. Zabaras, N., Hung Nguyen, T.: Control of freezing interface morphology in solidification processes in the presence of natural convection. Int. J. Num. Meth. Eng. 38, 1555–1578 (1995)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors thank anonymous referee for valuable comments and suggestions which improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ugur G. Abdulla.

Additional information

Communicated by J. Ball.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulla, U.G., Poggi, B. Optimal Stefan problem. Calc. Var. 59, 61 (2020). https://doi.org/10.1007/s00526-020-1712-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-020-1712-z

Mathematics Subject Classification

Navigation