Skip to main content
Log in

Lusternik–Schnirelman theory for the action integral of the Lorentz force equation

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper we introduce new Lusternik–Schnirelman type methods for nonsmooth functionals including the action integral associated to the relativistic Lagrangian of a test particle under the action of an electromagnetic field

$$\begin{aligned} {\mathcal {L}}(t,q,q')=1-\sqrt{1-|q'|^2}+q'\cdot W(t,q) - V(t,q), \end{aligned}$$

where \(V:[0,T]\times {\mathbb {R}}^3\rightarrow {\mathbb {R}}\) and \(W:[0,T]\times {\mathbb {R}}^3\rightarrow {\mathbb {R}}^3\) are two \(C^1\)-functions with V even and W odd in the second variable. By applying them, we obtain various multiplicity results concerning T-periodic solutions of the relativistic Lorentz force equation in Special Relativity,

$$\begin{aligned} \left( \frac{q'}{\sqrt{1-|q'|^2}}\right) '=E(t,q) + q'\times B(t,q), \end{aligned}$$

where \( E=-\nabla _q V-\frac{\partial W}{\partial t}, B=\hbox {curl}_q\, W. \) The zero Dirichlet boundary value conditions are considered as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)

    MathSciNet  MATH  Google Scholar 

  2. Arcoya, D., Bereanu, C., Torres, P.J.: Critical point theory for the Lorentz force equation. Arch. Ration. Mech. Anal. 232, 1685–1724 (2019)

    MathSciNet  MATH  Google Scholar 

  3. Bartolo, R., Mirenghi, E., Tucci, M.: Periodic trajectories on Lorentz manifolds under the action of a vector field. J. Differ. Equ. 166, 478–500 (2000)

    MathSciNet  MATH  Google Scholar 

  4. Benci, V., Fortunato, D.: A new variational principle for the fundamental equations of classical physics. Found. Phys. 28, 333–352 (1998)

    MathSciNet  MATH  Google Scholar 

  5. Bereanu, C., Mawhin, J.: Boundary value problems for some nonlinear systems with singular \(\phi \)-Laplacian. J. Fixed Point Theor. Appl. 4, 57–75 (2008)

    MathSciNet  MATH  Google Scholar 

  6. Brezis, H., Mawhin, J.: Periodic solutions of the forced relativistic pendulum. Differ. Integral Equ. 23, 801–810 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Browder, F.: Infinite dimensional manifolds and non-linear elliptic eigenvalue problems. Ann. Math. 82, 459–477 (1965)

    MathSciNet  MATH  Google Scholar 

  8. Caponio, E.: Time-like solutions to the Lorentz force equation in time-dependent electromagnetic and gravitational fields. J. Differ. Equ. 199, 115–142 (2004)

    MathSciNet  MATH  Google Scholar 

  9. Caponio, E., Masiello, A.: Trajectories for relativistic particles under the action of an electromagnetic field in a stationary space-time. Nonlinear Anal. 50, 71–89 (2002)

    MathSciNet  MATH  Google Scholar 

  10. Caponio, E., Masiello, A.: Trajectories of charged particles in a region of a stationary spacetime. Class. Quantum Gravity 19, 2229–2256 (2002)

    MathSciNet  MATH  Google Scholar 

  11. Caponio, E., Masiello, A.: The Avez–Seifert theorem for the relativistic Lorentz force equation. J. Math. Phys. 45, 4134–4140 (2004)

    MathSciNet  MATH  Google Scholar 

  12. Clark, D.C.: A variant of the Lusternik–Schnirelman theory. Indiana Univ. Math. J. 22, 65–74 (1972)

    MathSciNet  MATH  Google Scholar 

  13. Damour, T.: Poincaré, the dynamics of the electron, and relativity. C. R. Phys. 18, 551–562 (2017)

    Google Scholar 

  14. Dugundji, J.: An extension of Tietze’s theorem. Pac. J. Math. 1, 353–367 (1951)

    MathSciNet  MATH  Google Scholar 

  15. Einstein, A.: Zur Elektrodynamik bewegter Korper. Ann. Phis. 322(10), 891–921 (1905)

    MATH  Google Scholar 

  16. Ekeland, I.: Nonconvex minimization problems. Bull. Am. Math. Soc. (NS) 1, 443–474 (1979)

    MathSciNet  MATH  Google Scholar 

  17. Feynman, R., Leighton, R., Sands, M.: The Feynman Lectures on Physics. Electrodynamics, vol. 2. Addison-Wesley, Reading (1964)

    Google Scholar 

  18. Landau, L.D., Lifschitz, E.M.: The Classical Theory of Fields, vol. 2, 4th edn. Butterworth-Heinemann, Oxford (1980)

    Google Scholar 

  19. Lorentz, H.A.: Versuch einer Theorie der electrischen und optischen Erscheinungen in bewegten Körpern, E. J. Brill (1895)

  20. Lorentz, H.A.: Deux mémoires de Henri Poincaré sur la physique mathématique. Acta Math. 38, 293–308 (1921)

    MathSciNet  Google Scholar 

  21. Lusternik, L.A., Schnirelmann, L.G.: Méthodes topologiques dans les problèmes variationnels. Hermann, Paris (1934)

    MATH  Google Scholar 

  22. Minguzzi, E., Sánchez, M.: Connecting solutions of the Lorentz force equation do exist. Commun. Math. Phys. 264, 349–370 (2006)

    MathSciNet  MATH  Google Scholar 

  23. O’Neill, B.: Semi-Riemannian Geometry. Academic Press, New York (1983)

    MATH  Google Scholar 

  24. Palais, R.: Lusternik–Schnirelman theory on Banach manifolds. Topology 5, 115–132 (1966)

    MathSciNet  MATH  Google Scholar 

  25. Planck, M.: Das Prinzip der Relativität und die Grundgleichungen der Mechanik. Verh. Deutsch. Phys. Ges. 4, 136–141 (1906)

    MATH  Google Scholar 

  26. Poincaré, H.: Sur la dynamique de l’électron. Rend. Circ. Mat. Palermo 21, 129–176 (1906)

    MATH  Google Scholar 

  27. Sachs, R., Wu, H.H.: General Relativity for Mathematicians. Springer, Berlin (1977)

    MATH  Google Scholar 

  28. Schwartz, J.T.: Generalizing the Lusternik–Schnirelman theory of critical points. Commun. Pure Appl. Math. 17, 307–315 (1964)

    MathSciNet  MATH  Google Scholar 

  29. Szulkin, A.: Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems. Ann. Inst. H. Poincaré Anal. Non Linéaire (C) 3, 77–109 (1986)

    MathSciNet  MATH  Google Scholar 

  30. Timoumi, M.: Multiple closed trajectories of a relativistic particle. Rep. Math. Phys. 54, 1–21 (2004)

    MathSciNet  MATH  Google Scholar 

  31. Timoumi, M.: Subharmonics of a Hamiltonian systems class. Demostr. Math. XXXVII(4), 977–990 (2004)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is partially supported by MTM2017-82348-C2-1-P and PGC2018-096422-B-I00 (MCIU/AEI/FEDER, UE) and FQM-116 and FQM-183 (Junta de Andalucía).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro J. Torres.

Additional information

Communicated by P. Rabinowitz.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arcoya, D., Bereanu, C. & Torres, P.J. Lusternik–Schnirelman theory for the action integral of the Lorentz force equation. Calc. Var. 59, 50 (2020). https://doi.org/10.1007/s00526-020-1711-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-020-1711-0

Mathematics Subject Classification

Navigation