Alarcón, S., García-Melián, J., Quaas, A.: Optimal Liouville theorems for supersolutions of elliptic equations with the Laplacian. Ann. Sc. Norm. Super. Pisa Cl. Sci. 16, 129–158 (2016)
MathSciNet
MATH
Google Scholar
Bahri, A., Li, Y.Y.: On a min–max procedure for the existence of a positive solution for certain scalar field equations in \(\mathbb{R}^N\). Rev. Mat. Iberoamericana 6(1–2), 1–15 (1990)
MathSciNet
Article
Google Scholar
Bahri, A., Lions, P.-L.: On the existence of a positive solution of semilinear elliptic equations in unbounded domains. Ann. Inst. H. Poincaré Anal. Non Linéaire 14(3), 365–413 (1997)
MathSciNet
Article
Google Scholar
Bartsch, T., Soave, N.: A natural constraint approach to normalized solutions of nonlinear Schrödinger equations and systems. J. Funct. Anal. 272, 4998–5037 (2017)
MathSciNet
Article
Google Scholar
Bellazzini, J., Benci, V., Ghimenti, M., Micheletti, A.: On the existence of the fundamental eigenvalue of an elliptic problem in \(\mathbb{R}^N\). Adv. Nonlinear Stud. 7, 439–458 (2007)
MathSciNet
Article
Google Scholar
Bellazzini, J., Boussaïd, N., Jeanjean, L., Visciglia, N.: Existence and stability of standing waves for supercritical NLS with a partial confinement. Commun. Math. Phys. 353, 229–251 (2017)
MathSciNet
Article
Google Scholar
Bellazzini, J., Siciliano, G.: Scaling properties of functionals and existence of constrained minimizers. J. Funct. Anal. 261, 2486–2507 (2011)
MathSciNet
Article
Google Scholar
Bellazzini, J., Visciglia, N.: On the orbital stability for a class of nonautonomous NLS. Indiana Univ. Math. J. 59, 1211–1230 (2010)
MathSciNet
Article
Google Scholar
Brézis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88, 486–490 (1983)
MathSciNet
Article
Google Scholar
Cazenave, T.: Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI. xiv+323 pp. (2003)
Cazenave, T., Lions, P.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85, 549–561 (1982)
Article
Google Scholar
Colin, M., Jeanjean, K., Squassina, M.: Stability and instability results for standing waves of quasi-linear Schrödinger equations. Nonlinearity 23, 1353–1385 (2010)
MathSciNet
Article
Google Scholar
Garrisi, D., Georgiev, V.: Orbital stability and uniqueness of the ground state for the non-linear Schrödinger equation in dimension one. Discrete Contin. Dyn. Syst. 37, 4309–4328 (2017)
MathSciNet
Article
Google Scholar
Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Reprint of the 1998 edition. Classics in Mathematics. Springer, Berlin (2001)
Hirata, J.: A positive solution of a nonlinear Schrödinger equation with \(G\)-symmetry. Nonlinear Anal. 69, 3174–3189 (2008)
MathSciNet
Article
Google Scholar
Ikoma, N.: Compactness of minimizing sequences in nonlinear Schrödinger systems under multiconstraint conditions. Adv. Nonlinear Stud. 14, 115–136 (2014)
MathSciNet
Article
Google Scholar
Ikoma, N., Miyamoto, Y.: The compactness of minimizing sequences for a nonlinear Schrödinger system with potentials (preprint)
Jeanjean, L., Squassina, M.: An approach to minimization under a constraint: the added mass technique. Calc. Var. Partial Differ. Equ. 41, 511–534 (2011)
MathSciNet
Article
Google Scholar
Lieb, E., Loss, M.: Analysis. 2nd edn, Graduate Studies in Mathematics 14. American Mathematical Society, Providence, RI (2001)
Lions, P.: The concentration-compactness principle in the calculus of variations. The locally compact case. II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 223–283 (1984)
MathSciNet
Article
Google Scholar
Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Corrected reprint of the: original, p. 1984. Springer, New York (1967)
Shibata, M.: Stable standing waves of nonlinear Schrödinger equations with a general nonlinear term. Manuscr. Math. 143, 221–237 (2014)
Article
Google Scholar
Willem, M.: Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24. Birkhäuser, Boston (1996)
Google Scholar