Skip to main content
Log in

Lower semicontinuity of integrals of the calculus of variations in Cheeger–Sobolev spaces

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

A necessary condition called \(H_\mu ^{1,p}\)-quasiconvexity on p-coercive integrands is introduced for the lower semicontinuity with respect to the strong convergence of \(L^p_\mu (X;\mathbb {R}^m)\) of integral functionals defined on Cheeger–Sobolev spaces. Under polynomial growth conditions it turns out that this condition is necessary and sufficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi, E., Fusco, N.: Semicontinuity problems in the calculus of variations. Arch. Ration. Mech. Anal. 86(2), 125–145 (1984)

    MathSciNet  MATH  Google Scholar 

  2. Anza Hafsa, O., Mandallena, J.-P.: On the relaxation of variational integrals in metric Sobolev spaces. Adv. Calc. Var. 8(1), 69–91 (2015)

    MathSciNet  MATH  Google Scholar 

  3. Anza Hafsa, O., Mandallena, J.-P.: \(\Gamma \)-convergence of nonconvex integrals in Cheeger–Sobolev spaces and homogenization. Adv. Calc. Var. 10(4), 381–405 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Anza Hafsa, O., Mandallena, J.-P.: Relaxation of nonconvex unbounded integrals with general growth conditions in Cheeger–Sobolev spaces. Bull. Sci. Math. 142, 49–93 (2018)

    MathSciNet  MATH  Google Scholar 

  5. Björn, A., Björn, J.: Nonlinear Potential Theory on Metric Spaces, Volume 17 of EMS Tracts in Mathematics. European Mathematical Society (EMS), Zürich (2011)

    Google Scholar 

  6. Björn, J.: \(L^q\)-differentials for weighted Sobolev spaces. Mich. Math. J. 47(1), 151–161 (2000)

    MATH  Google Scholar 

  7. Ball, J.M., Murat, F.: \(W^{1, p}\)-quasiconvexity and variational problems for multiple integrals. J. Funct. Anal. 58(3), 225–253 (1984)

    MathSciNet  MATH  Google Scholar 

  8. Buckley, S.M.: Is the maximal function of a Lipschitz function continuous? Ann. Acad. Sci. Fenn. Math. 24(2), 519–528 (1999)

    MathSciNet  MATH  Google Scholar 

  9. Ball, J.M., Zhang, K.-W.: Lower semicontinuity of multiple integrals and the biting lemma. Proc. R. Soc. Edinb. Sect. A 114(3–4), 367–379 (1990)

    MathSciNet  MATH  Google Scholar 

  10. Cheeger, J.: Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9(3), 428–517 (1999)

    MathSciNet  MATH  Google Scholar 

  11. Colding, T.H., Minicozzi II, W.P.: Liouville theorems for harmonic sections and applications. Commun. Pure Appl. Math. 51(2), 113–138 (1998)

    MathSciNet  MATH  Google Scholar 

  12. Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions. Lecture Notes in Mathematics, vol. 580. Springer, Berlin (1977)

    MATH  Google Scholar 

  13. Dacorogna, B.: Direct Methods in the Calculus of Variations, Volume 78 of Applied Mathematical Sciences, 2nd edn. Springer, New York (2008)

    Google Scholar 

  14. Franchi, B., Hajłasz, P., Koskela, P.: Definitions of Sobolev classes on metric spaces. Ann. Inst. Fourier (Grenoble) 49(6), 1903–1924 (1999)

    MathSciNet  MATH  Google Scholar 

  15. Fragalà, I.: Lower semicontinuity of multiple \(\mu \)-quasiconvex integrals. ESAIM Control Optim. Calc. Var. 9, 105–124 (2003)

    MathSciNet  MATH  Google Scholar 

  16. Gong, J., Hajłasz, P.: Differentiability of \(p\)-harmonic functions on metric measure spaces. Potential Anal. 38(1), 79–93 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Gol’dshtein, V., Troyanov, M.: Axiomatic theory of Sobolev spaces. Expo. Math. 19(4), 289–336 (2001)

    MathSciNet  MATH  Google Scholar 

  18. Hajłasz, P.: Sobolev spaces on metric-measure spaces. In: Auscher, P., Coulhon, T., Grigoryan, A. (eds.) Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces (Paris, 2002), Contemporary Mathematics, vol. 338, pp. 173–218. American Mathematical Society, Providence (2003)

    Google Scholar 

  19. Heinonen, J.: Nonsmooth calculus. Bull. Am. Math. Soc. (N.S.) 44(2), 163–232 (2007)

    MathSciNet  MATH  Google Scholar 

  20. Heinonen, J., Koskela, P.: Quasiconformal maps in metric spaces with controlled geometry. Acta Math. 181(1), 1–61 (1998)

    MathSciNet  MATH  Google Scholar 

  21. Heinonen, J., Koskela, P., Shanmugalingam, N., Tyson, J.T.: Sobolev Spaces on Metric Measure Spaces, Volume 27 of New Mathematical Monographs. Cambridge University Press, Cambridge (2015). An approach based on upper gradients

    MATH  Google Scholar 

  22. Keith, S.: A differentiable structure for metric measure spaces. Adv. Math. 183(2), 271–315 (2004)

    MathSciNet  MATH  Google Scholar 

  23. Kristensen, J.: A necessary and sufficient condition for lower semicontinuity. Nonlinear Anal. 120, 43–56 (2015)

    MathSciNet  MATH  Google Scholar 

  24. Mandallena, J.-P.: Quasiconvexification of geometric integrals. Ann. Mat. Pura Appl. (4) 184(4), 473–493 (2005)

    MathSciNet  MATH  Google Scholar 

  25. Mandallena, J.-P.: Lower semicontinuity via \(W^{1, q}\)-quasiconvexity. Bull. Sci. Math. 137(5), 602–616 (2013)

    MathSciNet  MATH  Google Scholar 

  26. Marcellini, P.: Approximation of quasiconvex functions, and lower semicontinuity of multiple integrals. Manuscr. Math. 51(1–3), 1–28 (1985)

    MathSciNet  MATH  Google Scholar 

  27. Morrey Jr., C.B.: Quasi-convexity and the lower semicontinuity of multiple integrals. Pac. J. Math. 2, 25–53 (1952)

    MathSciNet  MATH  Google Scholar 

  28. Rockafellar, R.T.: Measurable dependence of convex sets and functions on parameters. J. Math. Anal. Appl. 28(1), 4–25 (1969)

    MathSciNet  MATH  Google Scholar 

  29. Shanmugalingam, N.: Newtonian spaces: an extension of Sobolev spaces to metric measure spaces. Rev. Mat. Iberoam. 16(2), 243–279 (2000)

    MathSciNet  MATH  Google Scholar 

  30. Sychev, M.A.: Solution of a problem of Ball and Murat. Dokl. Akad. Nauk 465(4), 411–414 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Anza Hafsa.

Additional information

Communicated by J. Ball.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anza Hafsa, O., Mandallena, JP. Lower semicontinuity of integrals of the calculus of variations in Cheeger–Sobolev spaces. Calc. Var. 59, 53 (2020). https://doi.org/10.1007/s00526-020-1702-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-020-1702-1

Mathematics Subject Classification

Navigation