Skip to main content
Log in

Cite this article

Abstract

In this paper, we study the Cauchy–Dirichlet problem for Parabolic complex Monge–Ampère equations on a strongly pseudoconvex domain using the viscosity method. We extend the results in Eyssidieux et al. (Math Ann 362:931–963, 2015) on the existence of solution and the convergence at infinity. We also establish the Hölder regularity of the solutions when the Cauchy–Dirichlet data are Hölder continuous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahag, P.: A Dirichlet problem for the complex Monge–Ampère operator in \({\cal{F}}(f)\). Michigan Math. J. 55(1), 123–138 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ahag, P., Cegrell, U., Czyz, R., Pham, H.-H.: Monge–Ampère measures on pluripolar sets. J. Math. Pures Appl. (9) 92(6), 613–627 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blocki, Z.: The domain of definition of the complex Monge–Ampère operator. Am. J. Math. 128(2), 519–530 (2006)

    Article  MATH  Google Scholar 

  4. Bedford, E., Taylor, B.A.: The dirichlet problem for a complex Monge–Ampère equation. Invent. Math. 37(1), 1–44 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bedford, E., Taylor, B.A.: A new capacity for plurisubharmonic functions. Acta Math. 149(1), 1–40 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cegrell, U.: Pluricomplex energy. Acta Math. 180, 187–217 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cegrell, U.: The general definition of the complex Monge–Ampère operator. Ann. Inst. Fourier 54(1), 159–179 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Charabati, M.: Hölder regularity for solutions to complex Monge–Ampère equations. Ann. Pol. Math. Tome 113(no. 2), 109–127 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Crandall, M.G., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27(no. 1), 1–67 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Demailly, J.-P., Dinew, S., Guedj, V., Hiep, P.H., Kolodziej, S., Zeriahi, A.: Hölder continuous solutions to Monge–Ampère equations. J. Eur. Math. Soc. 16, 619–647 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dinew, S., Do, H.-S., Tô, T.D.: A viscosity approach to the Dirichlet problem for degenerate complex Hessian type equations. Anal. PDE 12(2), 505–535 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Eyssidieux, P., Guedj, V., Zeriahi, A.: Viscosity solutions to degenerate complex Monge–Ampère equations. Commun. Pure Appl. Math. 64(8), 1059–1094 (2011)

    Article  MATH  Google Scholar 

  13. Eyssidieux, P., Guedj, V., Zeriahi, A.: Continuous approximation of quasiplurisubharmonic functions. Contemp. Math. 644, 67–78 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Eyssidieux, P., Guedj, V., Zeriahi, A.: Weak solutions to degenerate complex Monge–Ampère flows I. Math. Ann. 362, 931–963 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Eyssidieux, P., Guedj, V., Zeriahi, A.: Weak solutions to degenerate complex Monge–Ampère flows II. Adv. Math. 293, 37–80 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Eyssidieux, P., Guedj, V., Zeriahi, A.: Convergence of weak Kähler–Ricci flows on minimal models of positive Kodaira dimension. Commun. Math. Phys. 357(3), 1179–1214 (2018)

    Article  MATH  Google Scholar 

  17. Guedj, V., Kolodziej, S., Zeriahi, A.: Hölder continuous solutions to Monge–Ampère equations. Bull. Lond. Math. Soc. 40(6), 1070–1080 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Guedj, V., Lu, C.H., Zeriahi, A.: The pluripotential Cauchy–Dirichlet problem for complex Monge–Ampère flows. arXiv:1810.02122 (2018)

  19. Guedj, V., Lu, C.H., Zeriahi, A.: Pluripotential Kähler–Ricci flows. arXiv:1810.02121 (2018)

  20. Guedj, V., Lu, C.H., Zeriahi, A.: Pluripotential versus viscosity solutions to complex Monge–Ampère flows. arXiv:1909.07069 (2019)

  21. Guedj, V., Zeriahi, A.: Degenerate complex Monge–Ampère equations. EMS Tracts in Mathematics, 26. European Mathematical Society (EMS), Zürich. xxiv+472 pp. ISBN: 978-3-03719-167-5 (2017)

  22. Harvey, F.R., Lawson, H.B.: Dirichlet duality and the nonlinear Dirichlet problem. Commun. Pure Appl. Math. 62(3), 396–443 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ishii, H., Lions, P.L.: Viscosity solutions of fully nonlinear second-order elliptic partial differential equations. J. Differ. Equ. 83(1), 26–78 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  24. Imbert, C., Silvestre, L.: An introduction to fully nonlinear parabolic equations: an introduction to the Kähler–Ricci flow. 7–88, Lecture Notes in Math., 2086, Springer, Cham (2013)

  25. Kołodziej, S.: The complex Monge–Ampère equation. Acta Math. 180(1), 69–117 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lu, H.C.: Viscosity solutions to complex Hessian equations. J. Funct. Anal. 264(6), 1355–1379 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nguyen, V.-K., Pham, H.-H.: A comparison principle for the complex Monge–Ampère operator in Cegrell’s classes and applications. Trans. Am. Math. Soc. 361(10), 5539–5554 (2009)

    Article  MATH  Google Scholar 

  28. Song, J., Tian, G.: Canonical measures and Kähler–Ricci flow. J. Am. Math. Soc. 25(2), 303–353 (2012)

    Article  MATH  Google Scholar 

  29. Song, J., Tian, G.: The Kähler–Ricci flow through singularities. Invent. Math. 207(2), 519–595 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tô, T. D.: Convergence of the weak Kähler–Ricci Flow on manifolds of general type. arXiv:1905.01276 (2019)

  31. Wang, Y.: A viscosity approach to the Dirichlet problem for complex Monge–Ampère equations. Math. Z. 272(1–2), 497–513 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Xing, Y.: Continuity of the complex Monge–Ampère operator. Proc. Am. Math. Soc. 124(2), 457–467 (1996)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Vincent Guedj and Ahmed Zeriahi for very useful discussions. This work was begun during a visit by the first-named author to the Institut de Mathématiques de Toulouse (from September 1 to September 30, 2018) funded by LIA Formath Vietnam and ANR GRACK. This paper was partially written while the first-named author visited Vietnam Institute for Advanced Study in Mathematics(VIASM). He would like to thank these institutions for their hospitality. The authors would like to thank the referee for very useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoang-Son Do.

Additional information

Communicated by N. Trudinger.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first-named author was funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 101.02-2017.306.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Do, HS., Le, G. & Tô, T.D. Viscosity solutions to parabolic complex Monge–Ampère equations. Calc. Var. 59, 45 (2020). https://doi.org/10.1007/s00526-020-1700-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-020-1700-3

Mathematics Subject Classification

Navigation