Abstract
We consider degenerate and singular parabolic equations with p-Laplacian structure in bounded nonsmooth domains when the right-hand side is a signed Radon measure with finite total mass. We develop a new tool that allows global regularity estimates for the spatial gradient of solutions to such parabolic measure data problems, by introducing the (intrinsic) fractional maximal function of a given measure.
Similar content being viewed by others
References
Acerbi, E., Mingione, G.: Gradient estimates for a class of parabolic systems. Duke Math. J. 136(2), 285–320 (2007)
Adams, D.R., Hedberg, L.I.: Function Spaces and Potential Theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 314. Springer, Berlin (1996)
Baroni, P.: Marcinkiewicz estimates for degenerate parabolic equations with measure data. J. Funct. Anal. 267(9), 3397–3426 (2014)
Baroni, P.: Singular parabolic equations, measures satisfying density conditions, and gradient integrability. Nonlinear Anal. 153, 89–116 (2017)
Baroni, P., Habermann, J.: Calderón–Zygmund estimates for parabolic measure data equations. J. Differ. Equ. 252(1), 412–447 (2012)
Boccardo, L., Dall’Aglio, A., Gallouët, T., Orsina, L.: Nonlinear parabolic equations with measure data. J. Funct. Anal. 147(1), 237–258 (1997)
Boccardo, L., Gallouët, T.: Nonlinear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87(1), 149–169 (1989)
Bögelein, V.: Regularity results for weak and very weak solutions of higher order parabolic systems, Ph.D. thesis (2007)
Bögelein, V.: Global Calderón–Zygmund theory for nonlinear parabolic systems. Calc. Var. Partial Differ. Equ. 51(3–4), 555–596 (2014)
Bögelein, V., Parviainen, M.: Self-improving property of nonlinear higher order parabolic systems near the boundary. NoDEA Nonlinear Differ. Equ. Appl. 17(1), 21–54 (2010)
Bui, T.A., Duong, X.T.: Global Marcinkiewicz estimates for nonlinear parabolic equations with nonsmooth coefficients. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 18(3), 881–916 (2018)
Byun, S.-S., Ok, J., Ryu, S.: Global gradient estimates for general nonlinear parabolic equations in nonsmooth domains. J. Differ. Equ. 254(11), 4290–4326 (2013)
Byun, S.-S., Park, J.-T.: Global weighted Orlicz estimates for parabolic measure data problems: application to estimates in variable exponent spaces. J. Math. Anal. Appl. 467(2), 1194–1207 (2018)
Caffarelli, L.A., Peral, I.: On \(W^{1, p}\) estimates for elliptic equations in divergence form. Commun. Pure Appl. Math. 51(1), 1–21 (1998)
Casas, E.: Control of an elliptic problem with pointwise state constraints. SIAM J. Control Optim. 24(6), 1309–1318 (1986)
Casas, E.: Boundary control of semilinear elliptic equations with pointwise state constraints. SIAM J. Control Optim. 31(4), 993–1006 (1993)
Casas, E., de los Reyes, J.C., Tröltzsch, F.: Sufficient second-order optimality conditions for semilinear control problems with pointwise state constraints. SIAM J. Optim. 19(2), 616–643 (2008)
DiBenedetto, E.: Degenerate Parabolic Equations. Universitext. Springer, New York (1993)
DiBenedetto, E., Friedman, A.: Hölder estimates for nonlinear degenerate parabolic systems. J. Reine Angew. Math. 357, 1–22 (1985)
DiBenedetto, E., Friedman, A.: Addendum to: “Hölder estimates for nonlinear degenerate parabolic systems”. J. Reine Angew. Math. 363, 217–220 (1985)
Duzaar, F., Mingione, G.: Gradient estimates via non-linear potentials. Am. J. Math. 133(4), 1093–1149 (2011)
Evans, L.C.: Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, 2nd edn. American Mathematical Society, Providence (2010)
Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions, Revised edn, Textbooks in Mathematics. CRC Press, Boca Raton (2015)
Giusti, E.: Direct Methods in the Calculus of Variations. World Scientific Publishing Co. Inc., River Edge (2003)
Kinnunen, J., Lewis, J.L.: Higher integrability for parabolic systems of \(p\)-Laplacian type. Duke Math. J. 102(2), 253–271 (2000)
Kinnunen, J., Lukkari, T., Parviainen, M.: An existence result for superparabolic functions. J. Funct. Anal. 258(3), 713–728 (2010)
Kinnunen, J., Saksman, E.: Regularity of the fractional maximal function. Bull. Lond. Math. Soc. 35(4), 529–535 (2003)
Kuusi, T., Mingione, G.: Gradient regularity for nonlinear parabolic equations. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 12(4), 755–822 (2013)
Kuusi, T., Mingione, G.: Guide to nonlinear potential estimates. Bull. Math. Sci. 4(1), 1–82 (2014)
Kuusi, T., Mingione, G.: Riesz potentials and nonlinear parabolic equations. Arch. Ration. Mech. Anal. 212(3), 727–780 (2014)
Kuusi, T., Mingione, G.: The Wolff gradient bound for degenerate parabolic equations. J. Eur. Math. Soc. (JEMS) 16(4), 835–892 (2014)
Lemenant, A., Milakis, E., Spinolo, L.V.: On the extension property of Reifenberg-flat domains. Ann. Acad. Sci. Fenn. Math. 39(1), 51–71 (2014)
LeVeque, R.J., Li, Z.: The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Numer. Anal. 31(4), 1019–1044 (1994)
Lieberman, G.M.: Boundary and initial regularity for solutions of degenerate parabolic equations. Nonlinear Anal. 20(5), 551–569 (1993)
Meyer, C., Panizzi, L., Schiela, A.: Uniqueness criteria for the adjoint equation in state-constrained elliptic optimal control. Numer. Funct. Anal. Optim. 32(9), 983–1007 (2011)
Mingione, G.: The Calderón-Zygmund theory for elliptic problems with measure data. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6(2), 195–261 (2007)
Mingione, G.: Gradient estimates below the duality exponent. Math. Ann. 346(3), 571–627 (2010)
Mingione, G.: Nonlinear measure data problems. Milan J. Math. 79(2), 429–496 (2011)
Nguyen, Q.-H.: Global estimates for quasilinear parabolic equations on Reifenberg flat domains and its applications to Riccati type parabolic equations with distributional data. Calc. Var. Partial Differ. Equ. 54(4), 3927–3948 (2015)
Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Applied Mathematical Sciences, vol. 153. Springer, New York (2003)
Peskin, C.S.: Numerical analysis of blood flow in the heart. J. Comput. Phys. 25(3), 220–252 (1977)
Peskin, C.S., McQueen, D.M.: A three-dimensional computational method for blood flow in the heart. I. Immersed elastic fibers in a viscous incompressible fluid. J. Comput. Phys. 81(2), 372–405 (1989)
Petitta, F.: Renormalized solutions of nonlinear parabolic equations with general measure data. Ann. Mat. Pura Appl. (4) 187(4), 563–604 (2008)
Phuc, N.C.: Nonlinear Muckenhoupt–Wheeden type bounds on Reifenberg flat domains, with applications to quasilinear Riccati type equations. Adv. Math. 250, 387–419 (2014)
Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Mathematical Series, vol. 43. Princeton University Press, Princeton (1993). With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III
Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114(1), 146–159 (1994)
Toro, T.: Doubling and flatness: geometry of measures. Notices Am. Math. Soc. 44(9), 1087–1094 (1997)
Urbano, J.M.: The Method of Intrinsic Scaling. Lecture Notes in Mathematics, vol. 1930. Springer, Berlin (2008). A systematic approach to regularity for degenerate and singular PDEs
Acknowledgements
The authors thank an anonymous referee for valuable comments. The authors also thank Wontae Kim for a helpful comment on Lemma 4.2.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by M. Struwe.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
S.-S. Byun was supported by NRF-2017R1A2B2003877. J.-T. Park was supported by NRF-2019R1C1C1003844. P. Shin was supported by NRF-2020R1I1A1A01066850.
Rights and permissions
About this article
Cite this article
Byun, SS., Park, JT. & Shin, P. Global regularity for degenerate/singular parabolic equations involving measure data. Calc. Var. 60, 18 (2021). https://doi.org/10.1007/s00526-020-01906-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00526-020-01906-2