Skip to main content
Log in

Global regularity for degenerate/singular parabolic equations involving measure data

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We consider degenerate and singular parabolic equations with p-Laplacian structure in bounded nonsmooth domains when the right-hand side is a signed Radon measure with finite total mass. We develop a new tool that allows global regularity estimates for the spatial gradient of solutions to such parabolic measure data problems, by introducing the (intrinsic) fractional maximal function of a given measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi, E., Mingione, G.: Gradient estimates for a class of parabolic systems. Duke Math. J. 136(2), 285–320 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adams, D.R., Hedberg, L.I.: Function Spaces and Potential Theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 314. Springer, Berlin (1996)

    Google Scholar 

  3. Baroni, P.: Marcinkiewicz estimates for degenerate parabolic equations with measure data. J. Funct. Anal. 267(9), 3397–3426 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baroni, P.: Singular parabolic equations, measures satisfying density conditions, and gradient integrability. Nonlinear Anal. 153, 89–116 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baroni, P., Habermann, J.: Calderón–Zygmund estimates for parabolic measure data equations. J. Differ. Equ. 252(1), 412–447 (2012)

    Article  MATH  Google Scholar 

  6. Boccardo, L., Dall’Aglio, A., Gallouët, T., Orsina, L.: Nonlinear parabolic equations with measure data. J. Funct. Anal. 147(1), 237–258 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boccardo, L., Gallouët, T.: Nonlinear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87(1), 149–169 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bögelein, V.: Regularity results for weak and very weak solutions of higher order parabolic systems, Ph.D. thesis (2007)

  9. Bögelein, V.: Global Calderón–Zygmund theory for nonlinear parabolic systems. Calc. Var. Partial Differ. Equ. 51(3–4), 555–596 (2014)

    Article  MATH  Google Scholar 

  10. Bögelein, V., Parviainen, M.: Self-improving property of nonlinear higher order parabolic systems near the boundary. NoDEA Nonlinear Differ. Equ. Appl. 17(1), 21–54 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bui, T.A., Duong, X.T.: Global Marcinkiewicz estimates for nonlinear parabolic equations with nonsmooth coefficients. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 18(3), 881–916 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Byun, S.-S., Ok, J., Ryu, S.: Global gradient estimates for general nonlinear parabolic equations in nonsmooth domains. J. Differ. Equ. 254(11), 4290–4326 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Byun, S.-S., Park, J.-T.: Global weighted Orlicz estimates for parabolic measure data problems: application to estimates in variable exponent spaces. J. Math. Anal. Appl. 467(2), 1194–1207 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Caffarelli, L.A., Peral, I.: On \(W^{1, p}\) estimates for elliptic equations in divergence form. Commun. Pure Appl. Math. 51(1), 1–21 (1998)

    Article  MATH  Google Scholar 

  15. Casas, E.: Control of an elliptic problem with pointwise state constraints. SIAM J. Control Optim. 24(6), 1309–1318 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. Casas, E.: Boundary control of semilinear elliptic equations with pointwise state constraints. SIAM J. Control Optim. 31(4), 993–1006 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Casas, E., de los Reyes, J.C., Tröltzsch, F.: Sufficient second-order optimality conditions for semilinear control problems with pointwise state constraints. SIAM J. Optim. 19(2), 616–643 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. DiBenedetto, E.: Degenerate Parabolic Equations. Universitext. Springer, New York (1993)

    Book  MATH  Google Scholar 

  19. DiBenedetto, E., Friedman, A.: Hölder estimates for nonlinear degenerate parabolic systems. J. Reine Angew. Math. 357, 1–22 (1985)

    MathSciNet  MATH  Google Scholar 

  20. DiBenedetto, E., Friedman, A.: Addendum to: “Hölder estimates for nonlinear degenerate parabolic systems”. J. Reine Angew. Math. 363, 217–220 (1985)

    MathSciNet  MATH  Google Scholar 

  21. Duzaar, F., Mingione, G.: Gradient estimates via non-linear potentials. Am. J. Math. 133(4), 1093–1149 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Evans, L.C.: Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, 2nd edn. American Mathematical Society, Providence (2010)

    Google Scholar 

  23. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions, Revised edn, Textbooks in Mathematics. CRC Press, Boca Raton (2015)

    Book  Google Scholar 

  24. Giusti, E.: Direct Methods in the Calculus of Variations. World Scientific Publishing Co. Inc., River Edge (2003)

    Book  MATH  Google Scholar 

  25. Kinnunen, J., Lewis, J.L.: Higher integrability for parabolic systems of \(p\)-Laplacian type. Duke Math. J. 102(2), 253–271 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kinnunen, J., Lukkari, T., Parviainen, M.: An existence result for superparabolic functions. J. Funct. Anal. 258(3), 713–728 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kinnunen, J., Saksman, E.: Regularity of the fractional maximal function. Bull. Lond. Math. Soc. 35(4), 529–535 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kuusi, T., Mingione, G.: Gradient regularity for nonlinear parabolic equations. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 12(4), 755–822 (2013)

    MathSciNet  MATH  Google Scholar 

  29. Kuusi, T., Mingione, G.: Guide to nonlinear potential estimates. Bull. Math. Sci. 4(1), 1–82 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kuusi, T., Mingione, G.: Riesz potentials and nonlinear parabolic equations. Arch. Ration. Mech. Anal. 212(3), 727–780 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kuusi, T., Mingione, G.: The Wolff gradient bound for degenerate parabolic equations. J. Eur. Math. Soc. (JEMS) 16(4), 835–892 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lemenant, A., Milakis, E., Spinolo, L.V.: On the extension property of Reifenberg-flat domains. Ann. Acad. Sci. Fenn. Math. 39(1), 51–71 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. LeVeque, R.J., Li, Z.: The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Numer. Anal. 31(4), 1019–1044 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lieberman, G.M.: Boundary and initial regularity for solutions of degenerate parabolic equations. Nonlinear Anal. 20(5), 551–569 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  35. Meyer, C., Panizzi, L., Schiela, A.: Uniqueness criteria for the adjoint equation in state-constrained elliptic optimal control. Numer. Funct. Anal. Optim. 32(9), 983–1007 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mingione, G.: The Calderón-Zygmund theory for elliptic problems with measure data. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6(2), 195–261 (2007)

    MathSciNet  MATH  Google Scholar 

  37. Mingione, G.: Gradient estimates below the duality exponent. Math. Ann. 346(3), 571–627 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Mingione, G.: Nonlinear measure data problems. Milan J. Math. 79(2), 429–496 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Nguyen, Q.-H.: Global estimates for quasilinear parabolic equations on Reifenberg flat domains and its applications to Riccati type parabolic equations with distributional data. Calc. Var. Partial Differ. Equ. 54(4), 3927–3948 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Applied Mathematical Sciences, vol. 153. Springer, New York (2003)

    MATH  Google Scholar 

  41. Peskin, C.S.: Numerical analysis of blood flow in the heart. J. Comput. Phys. 25(3), 220–252 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  42. Peskin, C.S., McQueen, D.M.: A three-dimensional computational method for blood flow in the heart. I. Immersed elastic fibers in a viscous incompressible fluid. J. Comput. Phys. 81(2), 372–405 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  43. Petitta, F.: Renormalized solutions of nonlinear parabolic equations with general measure data. Ann. Mat. Pura Appl. (4) 187(4), 563–604 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  44. Phuc, N.C.: Nonlinear Muckenhoupt–Wheeden type bounds on Reifenberg flat domains, with applications to quasilinear Riccati type equations. Adv. Math. 250, 387–419 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Mathematical Series, vol. 43. Princeton University Press, Princeton (1993). With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III

    MATH  Google Scholar 

  46. Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114(1), 146–159 (1994)

    Article  MATH  Google Scholar 

  47. Toro, T.: Doubling and flatness: geometry of measures. Notices Am. Math. Soc. 44(9), 1087–1094 (1997)

    MathSciNet  MATH  Google Scholar 

  48. Urbano, J.M.: The Method of Intrinsic Scaling. Lecture Notes in Mathematics, vol. 1930. Springer, Berlin (2008). A systematic approach to regularity for degenerate and singular PDEs

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank an anonymous referee for valuable comments. The authors also thank Wontae Kim for a helpful comment on Lemma 4.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Tae Park.

Additional information

Communicated by M. Struwe.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

S.-S. Byun was supported by NRF-2017R1A2B2003877. J.-T. Park was supported by NRF-2019R1C1C1003844. P. Shin was supported by NRF-2020R1I1A1A01066850.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byun, SS., Park, JT. & Shin, P. Global regularity for degenerate/singular parabolic equations involving measure data. Calc. Var. 60, 18 (2021). https://doi.org/10.1007/s00526-020-01906-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-020-01906-2

Mathematics Subject Classification

Navigation