Skip to main content
Log in

Global existence and convergence to the modified Barenblatt solution for the compressible Euler equations with physical vacuum and time-dependent damping

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, the smooth solution of the physical vacuum problem for the one dimensional compressible Euler equations with time-dependent damping is considered. Near the vacuum boundary, the sound speed is \(C^{1/2}\)-Hölder continuous. The coefficient of the damping depends on time, given by this form \(\frac{\mu }{(1+t)^\lambda }\), \(\lambda ,\ \mu >0\), which decays by order \(-\lambda \) in time. Under the assumption that \(0<\lambda<1,\ 0<\mu \) or \(\lambda =1,\ 2<\mu \), we will prove the global existence of smooth solutions and convergence to the modified Barenblatt solution of the related porous media equation with time-dependent dissipation and the same total mass when the initial data of the Euler equations is a small perturbation of that of the Barenblatt solution. The pointwise convergence rates of the density, velocity and the expanding rate of the physical vacuum boundary are also given. The proof is based on space-time weighted energy estimates, elliptic estimates and Hardy inequality in the Lagrangian coordinates. Our result is an extension of that in Luo–Zeng (Commun Pure Appl Math 69(7):1354–1396, 2016), where the authors considered the physical vacuum free boundary problem of the compressible Euler equations with constant-coefficient damping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alinhac, S.: Blowup for Nonlinear Hyperbolic Equations. Birkhäuser, Boston (1995)

    Book  Google Scholar 

  2. Barenblatt, G.I.: On a class of exact solutions of the plane one-dimensional problem of unsteady filtration of a gas in a porous medium. Akad. Nauk SSSR. Prikl. Mat. Meh. 17, 739–742 (1953)

    MathSciNet  Google Scholar 

  3. Chemin, J.Y.: Remarques sur l’apparition de singularités dans les écoulements eulériens compressibles. Commun. Math. Phys. 133(2), 323–329 (1990)

    Article  Google Scholar 

  4. Courant, R., Friedrichs, K.O.: Supersonic Flow and Shock Waves. Interscience Publishers, New York (1948)

    MATH  Google Scholar 

  5. Christodoulou, D.: The Formation of Shocks in 3-Dimensional Fluids. EMS Monographs in Mathematics. European Mathematical Society, Zürich (2007)

    Book  Google Scholar 

  6. Chen, S., Li, H., Li, J., Mei, M., Zhang, K.: Global and blow-up solutions for compressible Euler equations with time-dependent damping. J. Differ. Equ. 268(9), 5035–5077 (2020)

    Article  MathSciNet  Google Scholar 

  7. Coutand, D., Lindblad, H., Shkoller, S.: A priori estimates for the free-boundary 3D compressible Euler equations in physical vacuum. Commun. Math. Phys. 296(2), 559–587 (2010)

    Article  MathSciNet  Google Scholar 

  8. Coutand, D., Shkoller, S.: Well-posedness in smooth function spaces for moving-boundary 1-D compressible Euler equations in physical vacuum. Commun. Pure Appl. Math. 64(3), 328–366 (2011)

    Article  MathSciNet  Google Scholar 

  9. Coutand, D., Shkoller, S.: Well-posedness in smooth function spaces for the moving-boundary three-dimensional compressible Euler equations in physical vacuum. Arch. Ration. Mech. Anal. 206(2), 515–616 (2012)

    Article  MathSciNet  Google Scholar 

  10. Cui, H., Yin, H., Zhang, J., Zhu, C.: Convergence to nonlinear diffusion waves for solutions of Euler equations with time-depending damping. J. Differ. Equ. 264(7), 4564–4602 (2018)

    Article  MathSciNet  Google Scholar 

  11. Gu, X., Lei, Z.: Well-posedness of 1-D compressible Euler–Poisson equations with physical vacuum. J. Differ. Equ. 252(3), 2160–2188 (2012)

    Article  MathSciNet  Google Scholar 

  12. Gu, X., Lei, Z.: Local well-posedness of the three dimensional compressible Euler-Poisson equations with physical vacuum. J. Math. Pures Appl. (9) 105(5), 662–723 (2016)

    Article  MathSciNet  Google Scholar 

  13. Geng, S., Lin, Y., Mei, M.: Asymptotic behavior of solutions to Euler equations with time-dependent damping in critical case. SIAM J. Math. Anal. 52(2), 1463–1488 (2020)

    Article  MathSciNet  Google Scholar 

  14. Huang, F., Marcati, P., Pan, R.: Convergence to the Barenblatt solution for the compressible Euler equations with damping and vacuum. Arch. Ration. Mech. Anal. 176(1), 1–24 (2005)

    Article  MathSciNet  Google Scholar 

  15. Huang, F., Pan, R., Wang, Z.: \(L^1\) convergence to the Barenblatt solution for compressible Euler equations with damping. Arch. Ration. Mech. Anal. 200(2), 665–689 (2011)

    Article  MathSciNet  Google Scholar 

  16. Hou, F., Yin, H.: On the global existence and blowup of smooth solutions to the multi-dimensional compressible Euler equations with time-depending damping. Nonlinearity 30(6), 2485–2517 (2017)

    Article  MathSciNet  Google Scholar 

  17. Hou, F., Witt, I., Yin, H.: Global existence and blowup of smooth solutions of 3-D potential equations with time-dependent damping. Pac. J. Math. 292(2), 389–426 (2018)

    Article  MathSciNet  Google Scholar 

  18. Jang, J.: Nonlinear instability theory of Lane–Emden stars. Commun. Pure Appl. Math. 67(9), 1418–1465 (2014)

    Article  MathSciNet  Google Scholar 

  19. Jang, J., Masmoudi, N.: Well-posedness for compressible Euler equations with physical vacuum singularity. Commun. Pure Appl. Math. 62(10), 1327–1385 (2009)

    Article  MathSciNet  Google Scholar 

  20. Jang, J., Masmoudi, N.: Well-posedness of compressible Euler equations in a physical vacuum. Commun. Pure Appl. Math. 68(1), 61–111 (2015)

    Article  MathSciNet  Google Scholar 

  21. Ji, S., Mei, M.: Optimal decay rates of the compressible Euler equations with time-dependent damping in \({\mathbb{R}}^n\): (I) under-damping case. arXiv:2006.00401

  22. Ji, S., Mei, M.: Optimal decay rates of the compressible Euler equations with time-dependent damping in \({\mathbb{R}}^n\): (II) over-damping case. arXiv:2006.00403

  23. Kufner, A., Maligranda, L., Persson, L.E.: The Hardy inequality. About its history and some related results. Vydavatelský Servis, Plzeň, (2007). 162 pp. ISBN: 978-80-86843-15-5

  24. Li, H., Li, J., Mei, M., Zhang, K.: Convergence to nonlinear diffusion waves for solutions of p-system with time-dependent damping. J. Math. Anal. Appl. 456(2), 849–871 (2017)

    Article  MathSciNet  Google Scholar 

  25. Luo, T., Xin, Z., Zeng, H.: Well-posedness for the motion of physical vacuum of the three-dimensional compressible Euler equations with or without self-gravitation. Arch. Ration. Mech. Anal. 213(3), 763–831 (2014)

    Article  MathSciNet  Google Scholar 

  26. Liu, T.P., Yang, T.: Compressible Euler equations with vacuum. J. Differ. Equ. 140(2), 223–237 (1997)

    Article  MathSciNet  Google Scholar 

  27. Luo, T., Zeng, H.: Global existence of smooth solutions and convergence to Barenblatt solutions for the physical vacuum free boundary problem of compressible Euler equations with damping. Commun. Pure Appl. Math. 69(7), 1354–1396 (2016)

    Article  MathSciNet  Google Scholar 

  28. Pan, X.: Global existence of solutions to 1-d Euler equations with time-dependent damping. Nonlinear Anal. 132, 327–336 (2016)

    Article  MathSciNet  Google Scholar 

  29. Pan, X.: Blow up of solutions to 1-d Euler equations with time-dependent damping. J. Math. Anal. Appl. 442, 435–445 (2016)

    Article  MathSciNet  Google Scholar 

  30. Pan, X.: Global existence and asymptotic behavior of solutions to the Euler equations with time-dependent damping. Appl. Anal. (2020). https://doi.org/10.1080/00036811.2020.1722805

    Article  Google Scholar 

  31. Rammaha, M.A.: Formation of singularities in compressible fluids in two-space dimensions. Proc. Am. Math. Soc. 107(3), 705–714 (1989)

    Article  MathSciNet  Google Scholar 

  32. Sugiyama, Y.: Singularity formation for the 1D compressible Euler equations with variable damping coefficient. Nonlinear Anal. 170, 70–87 (2018)

    Article  MathSciNet  Google Scholar 

  33. Sideris, T.: Formation of singularities in three-dimensional compressible fluids. Commun. Math. Phys. 101(4), 475–485 (1985)

    Article  MathSciNet  Google Scholar 

  34. Xu, C., Yang, Y.: Local existence with physical vacuum boundary condition to Euler equations with damping. J. Differ. Equ. 210(1), 217–231 (2005)

    Article  MathSciNet  Google Scholar 

  35. Yang, T.: Singular behavior of vacuum states for compressible fluids. J. Comput. Appl. Math. 190(1–2), 211–231 (2006)

    Article  MathSciNet  Google Scholar 

  36. Zeng, H.: Global resolution of the physical vacuum singularity for three-dimensional isentropic inviscid flows with damping in spherically symmetric motions. Arch. Ration. Mech. Anal. 226(1), 33–82 (2017)

    Article  MathSciNet  Google Scholar 

  37. Zeng, H.: Almost global solutions to the three-dimensional isentropic inviscid flows with damping in physical vacuum around Barenblatt solutions. Arch. Ration. Mech. Anal. (2020). https://doi.org/10.1007/s00205-020-01581-9

  38. Zeng, H.: Time-asymptotics of physical vacuum free boundaries for compressible inviscid flows with damping. arXiv:2003.14072

Download references

Acknowledgements

The author would like to thank Prof. Huicheng Yin and Dr. Fei Hou in Nanjing Normal University for helpful conversation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinghong Pan.

Additional information

Communicated by F.-H. Lin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

X. Pan is supported by Natural Science Foundation of Jiangsu Province (No. SBK2018041027) and National Natural Science Foundation of China (No. 11801268).

Appendix A. Estimates for \({\tilde{\eta }_x}\) and h

Appendix A. Estimates for \({\tilde{\eta }_x}\) and h

In this appendix, we prove (2.9) and (2.10). The idea of proof follows the line with that in Appendix of [27]. We may write (2.6) as the following system:

$$\begin{aligned} \left\{ \begin{aligned}&h_{t}=z, \\&z_{t}=-\frac{\mu }{(1+t)^\lambda }z-\frac{\mu (\lambda +1)}{\gamma +1}\left[ {\bar{\eta }}_{x}^{-\gamma }-\left( {\bar{\eta }}_{x}+h\right) ^{-\gamma }\right] -{\bar{\eta }}_{x t t}, \\&(h, z)|_{t=0}=(0,0). \end{aligned} \right. \end{aligned}$$

Recalling that \({\bar{\eta }}_{x}(t)=(1+t)^{\frac{\lambda +1}{\gamma +1}},\) we have \({\bar{\eta }}_{x t t}<0 .\) A simple phase plane analysis shows that there exist \(0<t_{0}<t_{1}<t_{2}\) such that, starting from \((h, z)=\) (0,0) at \(t=0, h\) and z increase in the interval \(\left[ 0, t_{0}\right] \) and z reaches its positive maximum at \(t_{0} ;\) in the interval \(\left[ t_{0}, t_{1}\right] , h\) keeps increasing and reaches its maximum at \(t_{1}, z\) decreases from its positive maximum to 0;  in the interval \(\left[ t_{1}, t_{2}\right] ,\) both h and z decrease, and z reaches its negative minimum at \(t_{2} ;\) in the interval \(\left[ t_{2}, \infty \right) , h\) decreases and z increases, and \((h, z) \rightarrow (0,0)\) as \(t \rightarrow \infty .\) This can be summarized as follows:

$$\begin{aligned} \begin{array}{l@{\quad }l} z(t) \uparrow _{0}, &{} h(t) \uparrow _{0}, \quad t \in \left[ 0, t_{0}\right] \\ z(t) \downarrow _{0}, &{} h(t) \uparrow , \quad t \in \left[ t_{0}, t_{1}\right] \\ z(t) \downarrow ^{0}, &{} h(t) \downarrow , \quad t \in \left[ t_{1}, t_{2}\right] \\ z(t) \uparrow ^{0}, &{} h(t) \downarrow _{0}, \quad t \in \left[ t_{2}, \infty \right) . \end{array} \end{aligned}$$

It follows from the above analysis that there exists a constant \(C=C(\lambda ,\mu ,\gamma , M)\) such that

$$\begin{aligned} 0 \le h(t) \le C \quad \text{ for } t \ge 0 . \end{aligned}$$

In view of (2.7), we then see that for some constant \(K>0\)

$$\begin{aligned} (1+t)^{ \frac{\lambda +1}{\gamma +1}} \le {\tilde{\eta }}_{x} \le K(1+t)^{ \frac{\lambda +1}{\gamma +1}}. \end{aligned}$$

To derive the decay property, we may rewrite (2.8) as

$$\begin{aligned} \left\{ \begin{aligned}&{\tilde{\eta }}_{x t t}+\frac{\mu }{(1+t)^\lambda }{\tilde{\eta }}_{x t}-\frac{\mu (\lambda +1)}{\gamma +1}{\tilde{\eta }}_{x}^{-\gamma }=0,\\&{\tilde{\eta }}_{x}|_{t=0}=1, \quad {\tilde{\eta }}_{x t}|_{t=0}=\frac{\lambda +1}{\gamma +1}. \end{aligned} \right. \end{aligned}$$
(A.1)

Next we give the proof of (2.9) and (2.10) separately. The general ideas are the same.

Case 1: \(\varvec{\lambda <1}\):

Then, we have by solving (A.1) that

$$\begin{aligned} \begin{aligned}&{\tilde{\eta }}_{x t}(t)=\frac{\lambda +1}{\gamma +1}e^{-\frac{\mu }{1-\lambda }(1+t)^{1-\lambda }}\\&\quad +\,\frac{(\lambda +1)\mu }{\gamma +1} \int _{0}^{t} e^{\frac{\mu }{1-\lambda }\left[ (1+s)^{1-\lambda }-(1+t)^{1-\lambda }\right] }{\tilde{\eta }}_{x}^{-\gamma }(s) d s\\&\quad \ge 0. \end{aligned} \end{aligned}$$
(A.2)

Next, we use the induction to prove (2.9). First, it follows from (A.2) that

$$\begin{aligned} \begin{aligned} {\tilde{\eta }}_{x t}(t)&\lesssim \, e^{-\frac{\mu }{1-\lambda }(1+t)^{1-\lambda }}+\int _{0}^{t} e^{\frac{\mu }{1-\lambda }\left[ (1+s)^{1-\lambda }-(1+t)^{1-\lambda }\right] }(1+s)^{-\frac{(\lambda +1)\gamma }{\gamma +1}} d s\\&\lesssim \, e^{-\frac{\mu }{1-\lambda }(1+t)^{1-\lambda }}+\left\{ \int _{0}^{t/2}+\int _{t/2}^{t}\right\} e^{\frac{\mu }{1-\lambda }\left[ (1+s)^{1-\lambda }-(1+t)^{1-\lambda }\right] }(1+s)^{-\frac{(\lambda +1)\gamma }{\gamma +1}} d s\\&\lesssim \, e^{-\frac{\mu }{1-\lambda }(1+t)^{1-\lambda }}+e^{-c(1+t)^{1-\lambda }}\int _{0}^{t/2}(1+s)^{-\frac{(\lambda +1)\gamma }{\gamma +1}} ds\\&\quad +\,(1+t)^{-\frac{(\lambda +1)\gamma }{\gamma +1}}\int _{t/2}^{t}e^{\frac{\mu }{1-\lambda }\left[ (1+s)^{1-\lambda }-(1+t)^{1-\lambda }\right] } d s\\&\lesssim \, e^{-\frac{\mu }{1-\lambda }(1+t)^{1-\lambda }}+(1+t)^{-\frac{(\lambda +1)\gamma }{\gamma +1}+\lambda } \\&\lesssim \, (1+t)^{\frac{\lambda +1}{\gamma +1}-1}. \end{aligned} \end{aligned}$$

This proves (2.9) for \(k=1 .\) For \(k\ge 2\), we make the induction hypothesis that (2.9) holds for all \(\ell =1,2, \ldots , k-1,\) that is

$$\begin{aligned} \left| \frac{d^{\ell } {\tilde{\eta }}_{x}(t)}{d t^{\ell }}\right| \le C_k (1+t)^{\frac{\lambda +1}{\gamma +1}-\ell }, \quad \ell =1,2, \ldots , k-1. \end{aligned}$$
(A.3)

It suffices to prove (A.3) holds for \(\ell =k .\) We derive from (A.1) that

$$\begin{aligned} \begin{aligned}&\frac{d^{k+1} {\tilde{\eta }}_{x}}{d t^{k+1}}(t)+\frac{\mu }{(1+t)^\lambda }\frac{d^{k} {\tilde{\eta }}_{x}}{d t^{k}}(t)\\&\quad =\frac{(\lambda +1)\mu }{\gamma +1} \frac{d^{k-1} {\tilde{\eta }}_{x}^{-\gamma }}{d t^{k-1}}(t)-\mu \sum ^{k-1}_{\ell =1}C^\ell _{k-1}\frac{d^\ell (1+t)^{-\lambda }}{dt^\ell }\frac{d^{k-\ell } {\tilde{\eta }}_{x}}{dt^{k-\ell }}. \end{aligned} \end{aligned}$$

Solving this ODE gives that

$$\begin{aligned} \begin{aligned} \frac{d^{k} {\tilde{\eta }}_{x}}{d t^{k}}(t)&=e^{-\frac{\mu }{1-\lambda }(1+t)^{1-\lambda }}\frac{d^{k} {\tilde{\eta }}_{x}}{d t^{k}}(0)\\&\qquad +\,\frac{(\lambda +1)\mu }{\gamma +1}\int ^t_0 e^{\frac{\mu }{1-\lambda }\left[ (1+s)^{1-\lambda }-(1+t)^{1-\lambda }\right] }\frac{d^{k-1} {\tilde{\eta }}_{x}^{-\gamma }}{d t^{k-1}}(s)ds\\&\qquad -\mu \int ^t_0 e^{\frac{\mu }{1-\lambda }\left[ (1+s)^{1-\lambda }-(1+t)^{1-\lambda }\right] }\sum ^{k-1}_{\ell =1}C^\ell _{k-1}\frac{d^\ell (1+s)^{-\lambda }}{dt^\ell }\frac{d^{k-\ell } {\tilde{\eta }}_{x}}{dt^{k-\ell }}(s)ds \end{aligned} \end{aligned}$$
(A.4)

where \(\frac{d^{k} {\tilde{\eta }}_{x}}{d t^{k}}(0)\) can be determined by the equation inductively. We need to bound the second and the third term on the righthand of (A.4).

Using (A.3), we can deduce by induction that

$$\begin{aligned} \left| \frac{d^{\ell } {\tilde{\eta }}^{-\gamma }_{x}(t)}{d t^{\ell }}\right| \le C_k (1+t)^{-\frac{(\lambda +1)\gamma }{\gamma +1}-\ell }, \quad \ell =1,2, \ldots , k-1. \end{aligned}$$
(A.5)

Substituting (A.3) and (A.5) into (A.4), we can get

$$\begin{aligned} \begin{aligned} \frac{d^{k} {\tilde{\eta }}_{x}}{d t^{k}}(t)&\lesssim \,e^{-\frac{\mu }{1-\lambda }(1+t)^{1-\lambda }}\\&\quad +\int ^t_0 e^{\frac{\mu }{1-\lambda }\left[ (1+s)^{1-\lambda }-(1+t)^{1-\lambda }\right] }(1+s)^{-\frac{(\lambda +1)\gamma }{\gamma +1}-(k-1)}ds\\&\quad +\sum ^{k-1}_{\ell =1}\int ^t_0 e^{\frac{\mu }{1-\lambda }\left[ (1+s)^{1-\lambda }-(1+t)^{1-\lambda }\right] }(1+s)^{-\lambda -\ell }(1+s)^{-\frac{(\lambda +1)\gamma }{\gamma +1}-(k-\ell )}(s)ds\\&\lesssim e^{-\frac{\mu }{1-\lambda }(1+t)^{1-\lambda }}\\&\quad +\int ^t_0 e^{\frac{\mu }{1-\lambda }\left[ (1+s)^{1-\lambda }-(1+t)^{1-\lambda }\right] }(1+s)^{-\frac{(\lambda +1)\gamma }{\gamma +1}-(k-1)}ds\\&\lesssim \,e^{-\frac{\mu }{1-\lambda }(1+t)^{1-\lambda }}+(1+t)^{-\frac{(\lambda +1)\gamma }{\gamma +1}-(k-1)+\lambda }\\&\lesssim (1+t)^{\frac{(\lambda +1)}{\gamma +1}-k}. \end{aligned} \end{aligned}$$

This finishes the proof of (2.9).

Case 2: \(\varvec{\lambda =1}\):

We have by solving (A.1) that

$$\begin{aligned} {\tilde{\eta }}_{x t}(t)=\frac{2}{\gamma +1}(1+t)^{-\mu }+\frac{2\mu }{\gamma +1} (1+t)^{-\mu }\int _{0}^{t} (1+s)^\mu {\tilde{\eta }}_{x}^{-\gamma }(s) d s \ge 0. \end{aligned}$$
(A.6)

The same as case \(0<\lambda <1\), we use the induction to prove (2.10) for \(k<\mu +\frac{2}{\gamma +1}\). First, it follows from (A.6) that

$$\begin{aligned} \begin{aligned} {\tilde{\eta }}_{x t}(t)&\lesssim (1+t)^{-\mu }+ (1+t)^{-\mu }\int _{0}^{t} (1+s)^\mu (1+s)^{-\frac{2\gamma }{\gamma +1}} d s\\&\lesssim (1+t)^{-\mu }+ (1+t)^{-\mu } (1+t)^{\mu -\frac{2\gamma }{\gamma +1}+1} \\&=(1+t)^{-\mu }+ (1+t)^{\frac{2}{\gamma +1}-1}\\&\lesssim (1+t)^{\frac{2}{\gamma +1}-1}. \end{aligned} \end{aligned}$$

This proves (2.10) for \(k=1 .\) For \(2 \le k <\mu +\frac{2}{\gamma +1}\), we make the induction hypothesis that (2.10) holds for all \(\ell =1,2, \ldots , k-1,\) that is

$$\begin{aligned} \left| \frac{d^{\ell } {\tilde{\eta }}_{x}(t)}{d t^{\ell }}\right| \le C_k (1+t)^{\frac{2}{\gamma +1}-\ell }, \quad \ell =1,2, \ldots , k-1. \end{aligned}$$
(A.7)

It suffices to prove (A.7) holds for \(\ell =k .\) We derive from (A.1) that

$$\begin{aligned} \begin{aligned}&\frac{d^{k+1} {\tilde{\eta }}_{x}}{d t^{k+1}}(t)+\frac{\mu }{1+t}\frac{d^{k} {\tilde{\eta }}_{x}}{d t^{k}}(t)\\&\quad =\frac{2\mu }{\gamma +1} \frac{d^{k-1} {\tilde{\eta }}_{x}^{-\gamma }}{d t^{k-1}}(t)-\mu \sum ^{k-1}_{\ell =1}C^\ell _{k-1}\frac{d^\ell (1+t)^{-1}}{ds^\ell }\frac{d^{k-\ell } {\tilde{\eta }}_{x}}{ds^{k-\ell }}. \end{aligned} \end{aligned}$$

So that

$$\begin{aligned} \begin{aligned} \frac{d^{k} {\tilde{\eta }}_{x}}{d t^{k}}(t)&=(1+t)^{-\mu }\frac{d^{k} {\tilde{\eta }}_{x}}{d t^{k}}(0)\\&\qquad +\,\frac{2\mu }{\gamma +1}(1+t)^{-\mu }\int ^t_0 (1+s)^{\mu }\frac{d^{k-1} {\tilde{\eta }}_{x}^{-\gamma }}{d t^{k-1}}(s)ds\\&\quad -\,\mu (1+t)^{-\mu }\int ^t_0 \sum ^{k-1}_{\ell =1}(1+s)^{\mu }C^\ell _{k-1}\frac{d^\ell (1+s)^{-1}}{dt^\ell }\frac{d^{k-\ell } {\tilde{\eta }}_{x}}{dt^{k-\ell }}(s)ds. \end{aligned} \end{aligned}$$
(A.8)

We need to bound the second and the third terms on the righthand of (A.8).

Using (A.7), we can deduce by induction that

$$\begin{aligned} \left| \frac{d^{\ell } {\tilde{\eta }}^{-\gamma }_{x}(t)}{d t^{\ell }}\right| \le C_k (1+t)^{-\frac{2\gamma }{\gamma +1}-\ell }, \quad \ell =1,2, \ldots , k-1. \end{aligned}$$
(A.9)

Substituting (A.7) and (A.9) into (A.8), we can get

$$\begin{aligned} \frac{d^{k} {\tilde{\eta }}_{x}}{d t^{k}}(t)\lesssim&\,(1+t)^{-\mu }+(1+t)^{-\mu }\int ^t_0 (1+s)^{\mu }(1+s)^{-\frac{2\gamma }{\gamma +1}-(k-1)}ds\nonumber \\&+(1+t)^{-\mu }\sum ^{k-1}_{\ell =1}\int ^t_0 (1+s)^{\mu }(1+s)^{-1-\ell }(1+s)^{\frac{2}{\gamma +1}-(k-\ell )}ds \nonumber \\ \lesssim&\,(1+t)^{-\mu }+(1+t)^{-\mu }\int ^t_0(1+s)^{\mu +\frac{2}{\gamma +1}-k-1}ds\nonumber \\ \lesssim&\,(1+t)^{-\mu }+(1+t)^{-\mu }(1+t)^{\mu +\frac{2}{\gamma +1}-k}\nonumber \\ \lesssim&\,(1+t)^{\frac{2}{\gamma +1}-k}. \end{aligned}$$
(A.10)

This finishes the proof of (A.7) for \(k<\mu +\frac{2}{\gamma +1}\). If \(k=\mu +\frac{2}{\gamma +1}\), from the third line of (A.10), we have

$$\begin{aligned} \begin{aligned} \left| \frac{d^{k} {\tilde{\eta }}_{x}}{d t^{k}}(t)\right| \lesssim&(1+t)^{-\mu }+(1+t)^{-\mu }\int ^t_0(1+s)^{-1}ds\\ \lesssim&(1+t)^{-\mu }\ln (1+t). \end{aligned} \end{aligned}$$

When \(k>\mu +\frac{2}{\gamma +1}\), it is a routine work to prove that

$$\begin{aligned} \left| \frac{d^{k} {\tilde{\eta }}_{x}}{d t^{k}}(t)\right| \le (1+t)^{-\mu }\ln (1+t) . \end{aligned}$$

by again using induction. Since in this case, the terms

$$\begin{aligned} \int ^t_0 (1+s)^{\mu }\frac{d^{k-1} {\tilde{\eta }}_{x}^{-\gamma }}{d t^{k-1}}(s)ds,\quad \int ^t_0 (1+s)^{\mu }\frac{d^\ell (1+s)^{-1}}{dt^\ell }\frac{d^{k-\ell } {\tilde{\eta }}_{x}}{dt^{k-\ell }}(s)ds \end{aligned}$$

in (A.8), actually are bounded by \(\ln (1+t)\). This finishes the proof of (2.10). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, X. Global existence and convergence to the modified Barenblatt solution for the compressible Euler equations with physical vacuum and time-dependent damping. Calc. Var. 60, 5 (2021). https://doi.org/10.1007/s00526-020-01866-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-020-01866-7

Mathematics Subject Classification

Navigation