Skip to main content
Log in

A mass supercritical problem revisited

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In any dimension \(N\ge 1\) and for given mass \(m>0\), we revisit the nonlinear scalar field equation with an \(L^2\) constraint:

$$\begin{aligned} \left\{ \begin{aligned} -\Delta u&=f(u)-\mu u\quad \text {in}~\mathbb {R}^N,\\ \Vert u\Vert ^2_{L^2(\mathbb {R}^N)}&=m,\\ u&\in H^1(\mathbb {R}^N), \end{aligned} \right. \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad (P_m) \end{aligned}$$

where \(\mu \in \mathbb {R}\) will arise as a Lagrange multiplier. Assuming only that the nonlinearity f is continuous and satisfies weak mass supercritical conditions, we show the existence of ground states to \((P_m)\) and reveal the basic behavior of the ground state energy \(E_m\) as \(m>0\) varies. In particular, to overcome the compactness issue when looking for ground states, we develop robust arguments which we believe will allow treating other \(L^2\) constrained problems in general mass supercritical settings. Under the same assumptions, we also obtain infinitely many radial solutions for any \(N\ge 2\) and establish the existence and multiplicity of nonradial sign-changing solutions when \(N\ge 4\). Finally we propose two open problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ackermans, N., Weth, T.: Unstable normalized standing waves for the space periodic NLS. Anal. PDE 12, 1177–1213 (2019)

    Article  MathSciNet  Google Scholar 

  2. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical points theory and applications. J. Funct. Anal. 14, 349–381 (1973)

    Article  MathSciNet  Google Scholar 

  3. Bartsch, T., De Valeriola, S.: Normalized solutions of nonlinear Schrödinger equations. Arch. Math. 100, 75–83 (2013)

    Article  MathSciNet  Google Scholar 

  4. Bartsch, T., Jeanjean, L., Soave, N.: Normalized solutions for a system of coupled cubic Schrödinger equations on \(\mathbb{R}^3\). J. Math. Pure Appl. 106, 583–614 (2016)

    Article  Google Scholar 

  5. Bartsch, T., Soave, N.: A natural constraint approach to normalized solutions on nonlinear Schrödinger equations and systems. J. Funct. Anal. 272, 4998–5037 (2017)

    Article  MathSciNet  Google Scholar 

  6. Bartsch, T., Soave, N.: Correction to “A natural constraint approach to normalized solutions on nonlinear Schrödinger equations and systems” [J. Funct. Anal. 272 (2017) 4998–5037]. J. Funct. Anal. 275, 516–521 (2018)

    Article  MathSciNet  Google Scholar 

  7. Bartsch, T., Soave, N.: Multiple normalized solutions for a competting system of Schrödinger equations. Calc. Var. 58, Article 22 (2019)

  8. Bartsch, T., Willem, M.: Infinitely many nonradial solutions of a Euclidean scalar field equation. J. Funct. Anal. 117, 447–460 (1993)

    Article  MathSciNet  Google Scholar 

  9. Bartsch, T., Zhang, X., Zou, W.: Normalized solutions for a coupled Schrödinger system. Math. Annalen (2020). https://doi.org/10.1007/s00208-020-02000-w

    Article  Google Scholar 

  10. Bellazzini, J., Boussaid, N., Jeanjean, L., Visciglia, N.: Existence and stability of standing waves for supercritical NLS with a partial confinement. Comm. Math. Phys. 353, 229–251 (2017)

    Article  MathSciNet  Google Scholar 

  11. Bellazzini, J., Georgiev, V., Visciglia, N.: Long time dynamics for semi-relativistic NLS and half wave in arbitrary dimension. Math. Ann. 371, 707–740 (2018)

    Article  MathSciNet  Google Scholar 

  12. Bellazzini, J., Jeanjean, L., Luo, T.: Existence and instability of standing waves with prescribed norm for a class of Schrödinger–Poisson equations. Proc. Lond. Math. Soc. 107, 303–339 (2013)

    Article  MathSciNet  Google Scholar 

  13. Berestycki, H., Cazenave, T.: Instabilités des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaire. C. R. Acad. Sci. Paris 293, 489–492 (1981)

    MathSciNet  MATH  Google Scholar 

  14. Berestycki, H., Lions, P.L.: Nonlinear scalar field equations I: existence of a ground state. Arch. Rat. Mech. Anal. 82, 313–346 (1983)

    Article  MathSciNet  Google Scholar 

  15. Berestycki, H., Lions, P.L.: Nonlinear scalar field equations II: existence of infinitely many solutions. Arch. Rat. Mech. Anal. 82, 347–375 (1983)

    Article  MathSciNet  Google Scholar 

  16. Bieganowski, B., Mederski, J.: Normalized ground states of the nonlinear Schrödinger equation with at least mass critical growth, preprint (2020). arXiv:2002.08344

  17. Bonheure, D., Casteras, J.-B., Gou, T., Jeanjean, L.: Normalized solutions to the mixed dispersion nonlinear Schrödinger equation in the mass critical and supercritical regime. Trans. Am. Math. Soc. 372, 2167–2212 (2019)

    Article  Google Scholar 

  18. Brezis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88, 486–490 (1983)

    Article  MathSciNet  Google Scholar 

  19. Chang, K.-C.: Methods in Nonlinear Analysis, Springer Monographs in Mathematics (2005)

  20. Cingolani, S., Jeanjean, L.: Stationary waves with prescribed \(L^2\)-norm for the planar Schrödinger–Poisson system. SIAM J. Math. Anal. 51, 3533–3568 (2019)

    Article  MathSciNet  Google Scholar 

  21. Ghoussoub, N.: Duality and Perturbation Methods in Critical Point Theory. Cambaridge University Press, Cambaridge (1993)

    Book  Google Scholar 

  22. Ikoma, N.: Compactness of minimizing sequences in nonlinear Schrödinger systems under multiconstraint conditions. Adv. Nonlinear Stud. 14, 115–136 (2014)

    Article  MathSciNet  Google Scholar 

  23. Ikoma, N., Tanaka, K.: A note on deformation argument for \(L^2\) normalized solutions of nonlinear Schrödinger equations and systems. Adv. Differ. Equ. 24, 609–646 (2019)

    MATH  Google Scholar 

  24. Jeanjean, L.: Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal. 28, 1633–1659 (1997)

    Article  MathSciNet  Google Scholar 

  25. Jeanjean, L.: On the existence of bounded Palais–Smale sequences and application to a Landesman–Lazer type problem set on \(\mathbb{R}^N\). Proc. Roy. Soc. Edinb. A 129, 787–809 (1999)

    Article  Google Scholar 

  26. Jeanjean, L., Lu, S.-S.: Nonlinear scalar field equations with general nonlinearity. Nonlinear Anal. 190, 111604 (2020)

    Article  MathSciNet  Google Scholar 

  27. Jeanjean, L., Lu, S.-S.: Nonradial normalized solutions for nonlinear scalar field equations. Nonlinearity 32, 4942–4966 (2019)

    Article  MathSciNet  Google Scholar 

  28. Le Coz, S.: A note on Berestycki–Cazenave classical instability result for nonlinear Schrödinger equations. Adv. Nonlinear Stud. 8, 455–463 (2008)

    MathSciNet  MATH  Google Scholar 

  29. Li, Y., Wang, Z.-Q., Zeng, J.: Ground states of nonlinear Schrödinger equations with potentials. Ann. Inst. H. Poincaré Anal. Non Linéaire 23, 829–837 (2006)

    Article  MathSciNet  Google Scholar 

  30. Lions, P.-L.: Symétrie et compacité dans les espaces de Sobolev. J. Funct. Anal. 49, 315–344 (1982)

    Article  Google Scholar 

  31. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case, part 1. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 109–145 (1984)

  32. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case, part 2. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 223–283 (1984)

  33. Liu, Z., Wang, Z.-Q.: On the Ambrosetti–Rabinowitz superlinear condition. Adv. Nonlinear Stud. 4, 561–572 (2004)

    Article  MathSciNet  Google Scholar 

  34. Lorca, S., Ubilla, P.: Symmetric and nonsymmetric solutions for an elliptic equation on \(\mathbb{R}^N\). Nonlinear Anal. 58, 961–968 (2004)

    Article  MathSciNet  Google Scholar 

  35. Mederski, J.: Nonradial solutions of nonlinear scalar field equations. Nonlinearity (to appear), arXiv:1711.05711v3

  36. Musso, M., Pacard, F., Wei, J.: Finite-energy sign-changing solutions with dihedral symmetry for the stationary nonlinear Schrödinger equation. J. Eur. Math. Soc. 14, 1923–1953 (2012)

    Article  MathSciNet  Google Scholar 

  37. Noris, B., Tavares, H., Verzini, G.: Normalized solutions for nonlinear Schrödinger systems on bounded domains. Nonlinearity 32, 1044–1072 (2019)

    Article  MathSciNet  Google Scholar 

  38. Palais, R.S.: The principle of symmetric criticality. Commun. Math. Phys. 69, 19–30 (1979)

    Article  MathSciNet  Google Scholar 

  39. Rabinowitz, P.H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics, Vol. 65. American Mathematical Society, Providence (1986)

  40. Soave, N.: Normalized ground states for the NLS equation with combined nonlinearities. J. Differ. Equ. 269, 6941–6987 (2020)

    Article  MathSciNet  Google Scholar 

  41. Soave, N.: Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case. J. Funct. Anal. 279, 108610 (2020)

    Article  MathSciNet  Google Scholar 

  42. Strauss, W.A.: Existence of solitary waves in higher dimensions. Comm. Math. Phys. 55, 149–162 (1977)

    Article  MathSciNet  Google Scholar 

  43. Szulkin, A., Weth, T.: Ground state solutions for some indefinite variational problems. J. Funct. Anal. 257, 3802–3822 (2009)

    Article  MathSciNet  Google Scholar 

  44. Szulkin, A., Weth, T.: The Method of Nehari Manifold. Handbook of Nonconvex Analysis and Applications, pp. 597–632. International Press, Somerville (2010)

    MATH  Google Scholar 

  45. Willem, M.: Minimax Theorems. Birkhäuser Verlag, Boston (1996)

    Book  Google Scholar 

Download references

Acknowledgements

The authors thank Jaroslaw Mederski for pointing to them the reference [16]. This has led us to improve a first version of our paper and, in particular, to show that the ground state obtained in Theorem 1.1 (ii) can be assumed to be radially symmetric. S.-S. Lu acknowledges the support of the National Natural Science Foundation of China (NSFC-11771324, 11831009 and 11811540026), of the China Scholarship Council (CSC-201706250149) and the hospitality of the Laboratoire de Mathématiques (CNRS UMR 6623), Université de Bourgogne Franche-Comté.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis Jeanjean.

Additional information

Communicated by P. Rabinowitz.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeanjean, L., Lu, SS. A mass supercritical problem revisited. Calc. Var. 59, 174 (2020). https://doi.org/10.1007/s00526-020-01828-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-020-01828-z

Mathematics Subject Classification

Navigation