Berestycki, H., Bouhours, J., Chapuisat, G.: Front blocking and propagation in cylinders with varying cross section. Calc. Var. Part. Diff. Equ. 55, 1–32 (2016)
MathSciNet
Article
Google Scholar
Berestycki, H., Hamel, F.: Front propagation in periodic excitable media. Commun. Pure Appl. Math. 55, 949–1032 (2002)
MathSciNet
Article
Google Scholar
Berestycki, H., Hamel, F.: Generalized traveling waves for reaction-diffusion equations, In: Perspectives in Nonlinear Partial Differential Equations. In honor of H. Brezis, Amer. Math. Soc., Contemp. Math. 446, 101-123 (2007)
Berestycki, H., Hamel, F.: Generalized transition waves and their properties. Commun. Pure Appl. Math. 65, 592–648 (2012)
MathSciNet
Article
Google Scholar
Berestycki, H., Hamel, F., Matano, H.: Bistable travelling waves around an obstacle. Commun. Pure Appl. Math. 62, 729–788 (2009)
Article
Google Scholar
Berestycki, H., Nirenberg, L.: Traveling fronts in cylinders. Ann. Inst. H. Poincaré, Anal. Non Linéaire 9, 497–572 (1992)
MathSciNet
Article
Google Scholar
Chapuisat, G., Grenier, E.: Existence and non-existence of progressive wave solutions for a bistable reaction-diffusion equation in an infinite cylinder whose diameter is suddenly increased. Commun. Part. Diff. Equ. 30, 1805–1816 (2005)
Article
Google Scholar
Ding, W., Hamel, F., Zhao, X.: Propagation phenomena for periodic bistable reaction-diffusion equations. Calc. Var. Part. Diff. Equ. 54, 2517–2551 (2015)
Article
Google Scholar
Ding, W., Hamel, F., Zhao, X.: Bistable pulsating fronts for reaction-diffusion equations in a periodic habitat. Indiana Univ. Math. J. 66, 1189–1265 (2017)
MathSciNet
Article
Google Scholar
Ducasse, R., Rossi, L.: Blocking and invasion for reaction-diffusion equations in periodic media, preprint (https://arxiv.org/abs/1711.07389)
Ducrot, A.: A multi-dimensional bistable nonlinear diffusion equation in periodic medium. Math. Ann. 366, 783–818 (2016)
MathSciNet
Article
Google Scholar
Eberle, S.: Front blocking versus propagation in the presence of drift disturbance in the direction of propagation, preprint
Fife, P.C., McLeod, J.B.: The approach of solutions of nonlinear diffusion equations to traveling front solutions. Arch. Ration. Mech. Anal. 65, 335–361 (1977)
Article
Google Scholar
Fisher, R.A.: The advance of advantageous genes. Ann. Eugenics 7, 335–369 (1937)
MATH
Google Scholar
Fang, J., Zhao, X.-Q.: Bistable traveling waves for monotone semiflows with applications. J. Europe. Math. Soc. 17, 2243–2288 (2015)
MathSciNet
Article
Google Scholar
Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001)
Book
Google Scholar
Guo, H., Hamel, F., Sheng, W.J.: On the mean speed of bistable transition fronts in unbounded domains, J. Math. Pures Appl., to appear
Hamel, F., Monneau, R.: Solutions of semilinear elliptic equations in \(\mathbb{R}^N\) with conical-shaped level sets. Commun. Part. Diff. Equ. 25, 769–819 (2000)
Article
Google Scholar
Hamel, F., Monneau, R., Roquejoffre, J.-M.: Existence and qualitative properties of multidimensional conical bistable fronts. Disc. Cont. Dyn. Syst. A 13, 1069–1096 (2005)
MathSciNet
Article
Google Scholar
Hamel, F., Monneau, R., Roquejoffre, J.-M.: Asymptotic properties and classification of bistable fronts with Lipschitz level sets. Disc. Cont. Dyn. Syst. A 14, 75–92 (2006)
MathSciNet
MATH
Google Scholar
Haragus, M., Scheel, A.: Corner defects in almost planar interface propagation. Ann. Inst. H. Poincaré, Anal. Non Linéaire 23, 283–329 (2006)
MathSciNet
Article
Google Scholar
Kolmogorov, A.N., Petrovsky, I.G., Piskunov, N.S.: Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Moskow Univ. Math. Bull. 1, 1–25 (1937)
Google Scholar
Matano, H., Nakamura, K.I., Lou, B.: Periodic traveling waves in a two-dimensional cylinder with saw-toothed boundary and their homogeneity limit. Netw. Heterog. Media 1, 537–568 (2006)
MathSciNet
Article
Google Scholar
Murray, J.D.: Mathematical Biology. Springer, Berlin (1989)
Book
Google Scholar
Ninomiya, H., Taniguchi, M.: Existence and global stability of traveling curved fronts in the Allen–Cahn equations. J. Diff. Equ. 213, 204–233 (2005)
MathSciNet
Article
Google Scholar
Nolen, J., Ryzhik, L.: Traveling waves in a one-dimensional heterogeneous medium. Ann. Inst. H. Poincaré, Anal. Non Linéaire 26, 1021–1047 (2009)
MathSciNet
Article
Google Scholar
Pauthier, A.: Entire solution in cylinder-like domains for a bistable reaction-diffusion equation. J. Dyn. Diff. Equ. 30, 1273 (2018)
MathSciNet
Article
Google Scholar
Roques, L., Roques, A., Berestycki, H., Kretzschmar, A.: A population facing climate change: joint influences of Allee effects and environmental boundary geometry. Pop. Ecol. 50, 215–225 (2008)
Article
Google Scholar
Shigesada, N., Kawasaki, K.: Biological Invasions: Theory and Practice, Oxford Series in Ecology and Evolution. Oxford University Press, Oxford (1997)
Google Scholar
Taniguchi, M.: Traveling fronts of pyramidal shapes in the Allen–Cahn equation. SIAM J. Math. Anal. 39, 319–344 (2007)
MathSciNet
Article
Google Scholar
Taniguchi, M.: The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen–Cahn equations. J. Diff. Equ. 246, 2103–2130 (2009)
MathSciNet
Article
Google Scholar
Taniguchi, M.: Multi-dimensional traveling fronts in bistable reaction-diffusion equations. Disc. Cont. Dyn. Syst. A 32, 1011–1046 (2012)
MathSciNet
Article
Google Scholar
Xin, X.: Existence and uniqueness of travelling waves in a reaction-diffusion equation with combustion nonlinearity. Indiana Univ. Math. J. 40, 985–1008 (1991)
MathSciNet
Article
Google Scholar
Xin, X.: Existence and stability of traveling waves in periodic media governed by a bistable nonlinearity. J. Dyn. Diff. Equ. 3, 541–573 (1991)
MathSciNet
Article
Google Scholar
Xin, J.X.: Existence of planar flame fronts in convective-diffusive periodic media. Arch. Ration. Mech. Anal. 121, 205–233 (1992)
MathSciNet
Article
Google Scholar
Xin, J.X.: Existence and nonexistence of traveling waves and reaction-diffusion front propagation in periodic media. J. Statist. Phys. 73, 893–926 (1993)
MathSciNet
Article
Google Scholar
Xin, J.X.: Analysis and modeling of front propagation in heterogeneous media. SIAM Rev. 42, 161–230 (2000)
MathSciNet
Article
Google Scholar
Xin, J.X., Zhu, J.: Quenching and propagation of bistable reaction-diffusion fronts in multidimensional periodic media. Phys. D 81, 94–110 (1995)
MathSciNet
Article
Google Scholar
Zlatoš, A.: Existence and non-existence of transition fronts for bistable and ignition reactions. Ann. Inst. H. Poincaré, Anal. Non Linéaire 34, 1687–1705 (2017)
MathSciNet
Article
Google Scholar