Skip to main content
Log in

Geometric and spectral properties of directed graphs under a lower Ricci curvature bound

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

For undirected graphs, the Ricci curvature introduced by Lin-Lu-Yau has been widely studied from various perspectives, especially geometric analysis. In the present paper, we discuss generalization problem of their Ricci curvature for directed graphs. We introduce a new generalization for strongly connected directed graphs by using the mean transition probability kernel which appears in the formulation of the Chung Laplacian. We conclude several geometric and spectral properties under a lower Ricci curvature bound extending previous results in the undirected case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alon, N.: Eigenvalues and expanders, Theory of computing (Singer Island, Fla., 1984). Combinatorica 6(2), 83–96 (1986)

    Article  MathSciNet  Google Scholar 

  2. Alon, N., Milman, V.D.: \(\lambda _{1}\), isoperimetric inequalities for graphs, and superconcentrators. J. Combin. Theory Ser. B 38(1), 73–88 (1985)

    Article  MathSciNet  Google Scholar 

  3. Amghibech, S.: Eigenvalues of the discrete \(p\)-Laplacian for graphs. Ars Combin. 67, 283–302 (2003)

    MathSciNet  MATH  Google Scholar 

  4. Bakry, D., Émery, M.: Diffusions hypercontractives, Séminaire de probabilités, XIX, 1983/84, 177–206, Lecture Notes in Math., 1123, Springer, Berlin, (1985)

  5. Bao, D., Chern, S.-S., Shen, Z.: An introduction to Riemann-Finsler geometry, Graduate Texts in Mathematics, 200. Springer, New York (2000)

    Book  Google Scholar 

  6. Bauer, F.: Normalized graph Laplacians for directed graphs. Linear Algebra Appl. 436(11), 4193–4222 (2012)

    Article  MathSciNet  Google Scholar 

  7. Bauer, F., Jost, J., Liu, S.: Ollivier-Ricci curvature and the spectrum of the normalized graph Laplace operator. Math. Res. Lett. 19(6), 1185–1205 (2012)

    Article  MathSciNet  Google Scholar 

  8. Bayle, V.: Propriétés de concavité du profil isopérimétrique et applications, PhD Thesis, Université Joseph-Fourier-Grenoble I, (2003)

  9. Benson, B., Ralli, P., Tetali, P.: Volume growth, curvature, and Buser-type inequalities in graphs, Int. Math. Res. Not. IMRN, (2019), rnz305

  10. Bourne, D.P., Cushing, D., Liu, S., Münch, F., Peyerimhoff, N.: Ollivier-Ricci idleness functions of graphs. SIAM J. Discrete Math. 32(2), 1408–1424 (2018)

    Article  MathSciNet  Google Scholar 

  11. Chung, F.: Spectral Graph Theory, CBMS Regional Conference Series in Mathematics, 92. American Mathematical Society, Providence, RI (1997)

  12. Chung, F.: Laplacians and the Cheeger inequality for directed graphs. Ann. Combin. 9(1), 1–19 (2005)

    Article  MathSciNet  Google Scholar 

  13. Chung, F.: The diameter and Laplacian eigenvalues of directed graphs. Electron. J. Combin. 13(1), 4–6 (2006)

    Article  MathSciNet  Google Scholar 

  14. Cushing, D., Kamtue, S., Koolen, J., Liu, S., Münch, F.F., Peyerimhoff, N.: Rigidity of the Bonnet-Myers inequality for graphs with respect to Ollivier Ricci curvature. Adv. Math. 369, 107188 (2020)

    Article  MathSciNet  Google Scholar 

  15. Eidi, M., Jost, J.: Ollivier Ricci curvature of directed hypergraphs. arXiv:1907.04727

  16. Ge, H., Hua, B., Jiang, W.: A note on limit of first eigenfunctions of \(p\)-Laplacian on graphs. arXiv:1812.07915

  17. Grigor’yan, A.: Introduction to Analysis on Graphs, University Lecture Series, 71. American Mathematical Society, Providence, RI (2018)

  18. Heintze, E., Karcher, H.: A general comparison theorem with applications to volume estimates for submanifolds. Ann. Sci. Ecole Norm. Sup. 11, 451–470 (1978)

    Article  MathSciNet  Google Scholar 

  19. Hua, B., Wang, L.: Dirichlet \(p\)-Laplacian eigenvalues and Cheeger constants on symmetric graphs. Adv. Math. 364, 106997 (2020)

    Article  MathSciNet  Google Scholar 

  20. Jost, J., Liu, S.: Ollivier’s Ricci curvature, local clustering and curvature-dimension inequalities on graphs. Discrete Comput. Geom. (2) 53, 300–322 (2014)

    Article  MathSciNet  Google Scholar 

  21. Kasue, A.: Applications of Laplacian and Hessian Comparison Theorems, Geometry of geodesics and related topics (Tokyo, 1982), 333–386, Adv. Stud. Pure Math. 3, North-Holland, Amsterdam, (1984)

  22. Keller, M., Mugnolo, D.: General Cheeger inequalities for \(p\)-Laplacians on graphs. Nonlinear Anal. 147, 80–95 (2016)

    Article  MathSciNet  Google Scholar 

  23. Lichnerowicz, A.: Variétés riemanniennes à tenseur C non négatif, C. R. Acad. Sci. Paris Sér. A-B 271, A650–A653 (1970)

    MATH  Google Scholar 

  24. Lin, Y., Yau, S.-T.: Ricci curvature and eigenvalue estimate on locally finite graphs. Math. Res. Lett. 17(2), 343–356 (2010)

    Article  MathSciNet  Google Scholar 

  25. Lin, Y., Lu, L., Yau, S.-T.: Ricci curvature of graphs. Tohoku Math. J. (2) 63(4), 605–627 (2011)

    Article  MathSciNet  Google Scholar 

  26. Milman, E.: Sharp isoperimetric inequalities and model spaces for curvature-dimension-diameter condition. J. Eur. Math. Soc. 17, 1041–1078 (2015)

    Article  MathSciNet  Google Scholar 

  27. Morgan, F.: Manifolds with density. Notices of the AMS 853–858 (2005)

  28. Münch, F., Wojciechowski, R.K.: Ollivier Ricci curvature for general graph Laplacians: Heat equation, Laplacian comparison, non-explosion and diameter bounds. Adv. Math. 356, 106759 (2019)

    Article  MathSciNet  Google Scholar 

  29. Ohta, S.: Splitting theorems for Finsler manifolds of nonnegative Ricci curvature. J. Reine Angew. Math. 700, 155–174 (2015)

    MathSciNet  MATH  Google Scholar 

  30. Ohta, S.: Needle decompositions and isoperimetric inequalities in Finsler geometry. J. Math. Soc. Japan 70(2), 651–693 (2018)

    Article  MathSciNet  Google Scholar 

  31. Ollivier, Y.: Ricci curvature of Markov chains on metric spaces. J. Funct. Anal. 256(3), 810–864 (2009)

    Article  MathSciNet  Google Scholar 

  32. Paeng, S.-H.: Volume and diameter of a graph and Ollivier’s Ricci curvature. Eur. J. Combin. 33(8), 1808–1819 (2012)

    Article  MathSciNet  Google Scholar 

  33. Sakurai, Y.: Concentration of \(1\)-Lipschitz functions on manifolds with boundary with Dirichlet boundary condition. arXiv:1712.04212v4

  34. Sakurai, Y.: Comparison geometry of manifolds with boundary under a lower weighted Ricci curvature bound. Canad. J. Math. 72(1), 243–280 (2020)

    Article  MathSciNet  Google Scholar 

  35. Shen, Z.: Lectures on Finsler Geometry. World Scientific Publishing Co., Singapore (2001)

    Book  Google Scholar 

  36. Tudisco, F., Hein, M.: A nodal domain theorem and a higher-order Cheeger inequality for the graph \(p\)-Laplacian. J. Spectr. Theory 8(3), 883–908 (2018)

    Article  MathSciNet  Google Scholar 

  37. Villani, C.: Topics in optimal transportation, Graduate Studies in Mathematics, 58. American Mathematical Society, Providence, RI (2003)

  38. Villani, C.: Optimal Transport: Old and New. Springer, Berlin (2009)

    Book  Google Scholar 

  39. Yamada, T.: Curvature dimension inequalities on directed graphs. arXiv:1701.01510

  40. Yamada, T.: The Ricci curvature on directed graphs. J. Korean Math. Soc. 56(1), 113–125 (2019)

    MathSciNet  MATH  Google Scholar 

  41. Yoshida, Y.: Cheeger inequalities for submodular transformations, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, 2582–2601. SIAM, Philadelphia, PA (2019)

Download references

Acknowledgements

The authors are grateful to the anonymous referees for valuable comments. The first author was supported in part by JSPS KAKENHI (19K14532). The first and second authors were supported in part by JSPS Grant-in-Aid for Scientific Research on Innovative Areas “Discrete Geometric Analysis for Materials Design” (17H06460).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yohei Sakurai.

Additional information

Communicated by J. Jost.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozawa, R., Sakurai, Y. & Yamada, T. Geometric and spectral properties of directed graphs under a lower Ricci curvature bound. Calc. Var. 59, 142 (2020). https://doi.org/10.1007/s00526-020-01809-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-020-01809-2

Mathematics Subject Classification

Navigation