Skip to main content

Advertisement

Log in

On boundedness, blow-up and convergence in a two-species and two-stimuli chemotaxis system with/without loop

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this work, we study dynamic properties of classical solutions to a homogenous Neumann initial-boundary value problem (IBVP) for a two-species and two-stimuli chemotaxis model with/without chemical signalling loop in a 2D bounded and smooth domain. We detect the product of two species masses as a feature to determine boundedness, gradient estimate, blow-up and exponential convergence of classical solutions for the corresponding IBVP. More specifically, we first show generally a smallness on the product of both species masses, thus allowing one species mass to be suitably large, is sufficient to guarantee global boundedness, higher order gradient estimates and \(W^{j,\infty }(j\ge 1)\)-exponential convergence with rates of convergence to constant equilibria; and then, in a special case, we detect a straight line of masses on which blow-up occurs for large product of masses. Our findings provide new understandings about the underlying model, and thus, improve and extend greatly the existing knowledge relevant to this model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I. Commun. Pure Appl. Math. 12, 623–727 (1959)

    MathSciNet  MATH  Google Scholar 

  2. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, II. Commun. Pure Appl. Math. 17, 35–92 (1964)

    MathSciNet  MATH  Google Scholar 

  3. Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M.: Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci. 25, 1663–1763 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Black, T.: Global existence and asymptotic stability in a competitive two-species chemotaxis system with two signals. Discrete Contin. Dyn. Syst. Ser. B 22, 1253–1272 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Carrillo, J., J̈ungle, A., Markowich, P., Toscani, G., Unterreiter, A.: Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities. Monatsh. Math. 133, 1–82 (2001)

    MathSciNet  MATH  Google Scholar 

  6. Cao, X.: Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces. Discrete Contin. Dyn. Syst. 35, 1891–1904 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Conca, C., Espejo, E., Vilches, K.: Remarks on the blowup and global existence for a two species chemotactic Keller–Segel system in \({\mathbb{R}}^2\). Eur. J. Appl. Math. 22, 553–580 (2011)

    MATH  Google Scholar 

  8. Espejo Arenas, E., Stevens, A., Velzquez, J.: Simultaneous finite time blow-up in a two-species model for chemotaxis. Analysis (Munich) 29, 317–338 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Friedman, A.: Partial Differential Equations. Holt, Rinehart Winston, New York (1969)

    MATH  Google Scholar 

  10. Gajewski, H., Zacharias, K.: Global behaviour of a reaction-diffusion system modelling chemotaxis. Math. Nachr. 195, 77–114 (1998)

    MathSciNet  MATH  Google Scholar 

  11. Herrero, M., Velázquez, J.: A blow-up mechanism for a chemotaxis model. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 24, 633–683 (1997)

    MathSciNet  MATH  Google Scholar 

  12. Horstmann, D., Wang, G.: Blow-up in a chemotaxis model without symmetry assumptions. Eur. J. Appl. Math. 12, 159–177 (2001)

    MathSciNet  MATH  Google Scholar 

  13. Horstmann, D.: From 1970 until present: the Keller-Segel model in chemotaxis and its consequences, I, Jahresber. Deutsch. Math. Verien 105(2003), 103–165 (1970)

    MATH  Google Scholar 

  14. Horstmann, D., Winkler, M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equ. 215, 52–107 (2005)

    MathSciNet  MATH  Google Scholar 

  15. Horstmann, D.: Generalizing the Keller–Segel model: Lyapunov functionals, steady state analysis, and blow-up results for multi-species chemotaxis models in the presence of attraction and repulsion between competitive interacting species. J. Nonlinear Sci. 21, 231–270 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Jäger, W., Luckhaus, S.: On explosions of solutions to a system of partial differential equations modelling chemotaxis. Trans. Am. Math. Soc. 329, 819–824 (1992)

    MathSciNet  MATH  Google Scholar 

  17. Jin, H., Wang, Z.: Boundedness, blowup and critical mass phenomenon in competing chemotaxis. J. Differ. Equ. 260, 162–196 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Jin, H., Xiang, T.: Repulsion reeefects on boundedness in a quasilinear attraction-repuslsion chemotaxis model in higher diemsnions. Discrete Contin. Dyn. Syst. Ser. B 23, 3071–3085 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Knútsdóttir, H., Pálsson, E., Edelstein-Keshet, L.: Mathematical model of macrophage-facilitated breast cancer cells invasion. J. Theor. Biol. 357, 184–199 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Kowalczyk, R., Szymańska, Z.: On the global existence of solutions to an aggregation model. J. Math. Anal. Appl. 343, 379–398 (2008)

    MathSciNet  MATH  Google Scholar 

  21. Ladyzenskaja, O.A., Solonnikov, V.A., Ural’eva, N.N.: Linear and Quasi-linear Equations of Parabolic Type, Amer. Math. Soc. Transl. 23. AMS, Providence (1968)

  22. Li, X., Wang, Y.: Boundedness in a two-species chemotaxis parabolic system with two chemicals. Discrete Contin. Dyn. Syst. Ser. B 22, 2717–2729 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Li, Y., Lankeit, J.: Boundedness in a chemotaxis-haptotaxis model with nonlinear diffusion. Nonlinearity 29, 1564–1595 (2016)

    MathSciNet  MATH  Google Scholar 

  24. Lin, K., Mu, C.: Global existence and convergence to steady states for an attraction-repulsion chemotaxis system. Nonlinear Anal. Real World Appl. 31, 630–642 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Lin, K., Mu, C., Zhou, D.: Stabilization in a higher-dimensional attraction-repulsion chemotaxis system if repulsion dominates over attraction. Math. Models Methods Appl. Sci. 28, 1105–1134 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Lin, K., Xiang, T.: On global solutions and blow-up for a short-ranged chemical signaling loop. J. Nonlinear Sci. 29, 551–591 (2019)

    MathSciNet  MATH  Google Scholar 

  27. Nagai, T.: Blow-up of radially symmetric solutions to a chemotaxis system. Adv. Math. Sci. Appl. 5, 581–601 (1995)

    MathSciNet  MATH  Google Scholar 

  28. Nagai, T., Senba, T., Yoshida, K.: Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis. Funkcial. Ekvac. 40, 411–433 (1997)

    MathSciNet  MATH  Google Scholar 

  29. Nagai, T.: Blow-up of nonradial solutions to parabolic-elliptic systems modelling chemotaxis in twodimensional domains. J. Inequal. Appl. 6, 37–55 (2001)

    MathSciNet  MATH  Google Scholar 

  30. Payne, L., Weinberger, H.: An optimal Poincaré inequality for convex domains. Arch. Rational Mech. Anal. 5, 286–292 (1960)

    MathSciNet  MATH  Google Scholar 

  31. Qiu, H., Guo, S.: Global existence and stability in a two-species chemotaxis system. Discrete Contin. Dyn. Syst. Ser. B 24, 1569–1587 (2019)

    MathSciNet  MATH  Google Scholar 

  32. Stinner, C., Tello, J., Winkler, M.: Competitive exclusion in a two-species chemotaxis model. J. Math. Biol. 68, 1607–1626 (2014)

    MathSciNet  MATH  Google Scholar 

  33. Tao, Y., Wang, Z.: Competing effects of attraction vs. repulsion in chemotaxis. Math. Models Methods Appl. Sci. 23, 1–36 (2013)

    MathSciNet  MATH  Google Scholar 

  34. Tao, Y., Winkler, M.: A chemotaxis-haptotaxis model: the roles of nonlinear diffusion and logistic source. SIAM J. Math. Anal. 43, 685–704 (2011)

    MathSciNet  MATH  Google Scholar 

  35. Tao, Y., Winkler, M.: Energy-type estimates and global solvability in a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant. J. Differ. Equ. 257, 784–815 (2014)

    MathSciNet  MATH  Google Scholar 

  36. Tao, Y., Winkler, M.: Boundedness vs. blow-up in a two-species chemotaxis system with two chemicals. Discrete Contin. Dyn. Syst. Ser. B 20, 3165–3183 (2015)

    MathSciNet  MATH  Google Scholar 

  37. Tello, J., Winkler, M.: Stabilization in a two-species chemotaxis system with a logistic source. Nonlinearity 25, 1413–1425 (2012)

    MathSciNet  MATH  Google Scholar 

  38. Tu, X., Mu, C., Zheng, P., Lin, K.: Global dynamics in a two-species chemotaxis-competition system with two signals. Discrete Contin. Dyn. Syst. 38, 3617–3636 (2018)

    MathSciNet  MATH  Google Scholar 

  39. Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model. J. Differ. Equ. 248, 2889–2905 (2010)

    MathSciNet  MATH  Google Scholar 

  40. Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller–Segel system. J. Math. Pures Appl. 100, 748–767 (2013)

    MathSciNet  MATH  Google Scholar 

  41. Xiang, T.: Boundedness and global existence in the higher-dimensional parabolic-parabolic chemotaxis system with/without growth source. J. Differ. Equ. 258, 4275–4323 (2015)

    MathSciNet  MATH  Google Scholar 

  42. Xiang, T.: Global dynamics for a diffusive predator-prey model with prey-taxis and classical Lotka-Volterra kinetics. Nonlinear Anal. Real World Appl. 39, 278–299 (2018)

    MathSciNet  MATH  Google Scholar 

  43. Xiang, T.: Sub-logistic source can prevent blow-up in the 2D minimal Keller–Segel chemotaxis system. J. Math. Phys. 59, 081502 (2018)

    MathSciNet  MATH  Google Scholar 

  44. Yu, H., Wang, W., Zheng, S.: Criteria on global boundedness versus finite time blow-up to a two-species chemotaxis system with two chemicals. Nonlinearity 31, 502–514 (2018)

    MathSciNet  MATH  Google Scholar 

  45. Zhang, Q., Liu, X., Yang, X.: Global existence and asymptotic behavior of solutions to a two-species chemotaxis system with two chemicals. J. Math. Phys. 58, 111504 (2017)

    MathSciNet  MATH  Google Scholar 

  46. Zhang, Q.: Competitive exclusion for a two-species chemotaxis system with two chemicals. Appl. Math. Lett. 83, 27–32 (2018)

    MathSciNet  MATH  Google Scholar 

  47. Zheng, P., Mu, C.: Global boundedness in a two-competing-species chemotaxis system with two chemicals. Acta Appl. Math. 148, 157–177 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referee very much for carefully reading our manuscript and giving positive and valuable comments, which further helped them to improve the exposition of this work. K. Lin is supported by the NSF of China (No. 11801461), and T. Xiang is supported by the NSF of China (Nos. 11601516 and 11871226) and the Research Funds of Renmin University of China (No. 2018030199).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian Xiang.

Additional information

Communicated by P. Rabinowitz.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, K., Xiang, T. On boundedness, blow-up and convergence in a two-species and two-stimuli chemotaxis system with/without loop. Calc. Var. 59, 108 (2020). https://doi.org/10.1007/s00526-020-01777-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-020-01777-7

Mathematics Subject Classification

Navigation