Skip to main content

Advertisement

Log in

Existence, regularity and uniqueness of weak solutions with bounded magnetic fields to the steady Hall-MHD system

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Under the condition of small external forces, we obtain existence of a weak solution of the steady Hall-MHD system with Hölder continuous magnetic field. We also established regularity of weak solutions provided that magnetic fields are bounded. For sufficiently small external forces, uniqueness result is also established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acheritogaray, M., Degond, P., Frouvelle, A., Liu, J.G.: Kinetic formulation and global existence for the Hall–Magneto–hydrodynamics system. Kinet. Relat. Models 4(4), 901–918 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alberti, G.S.: Hölder regularity for Maxwell’s equations under minimal assumptions on the coefficients. Calc. Var. Partial Differ. Equ. 57(3), 11 (2018). Art. 71

    Article  MATH  Google Scholar 

  3. Amrouche, C., Seloula, N.: \(L^p\)-theory for vector potentials and Sobolev’s inequalities for vector fields. C. R. Math. Acad. Sci. Paris 349(9–10), 529–534 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Amrouche, C., Seloula, N.: \(L^p\)-theory for vector potentials and Sobolev’s inequalities for vector fields: application to the Stokes equations with pressure boundary conditions. Math. Models Methods Appl. Sci. 23(1), 37–92 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bates, P.W., Pan, X.B.: Nucleation of instability of the Meissner state of 3-dimensional superconductors. Commun. Math. Phys. 276(3), 571–610 (2007). Erratum, 283(3), 861 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boyer, F., Fabrie, P.: Mathematical Tools for the Study of the Incompressible Navier–Stokes Equations and Related Models. Applied Mathematical Sciences, vol. 183. Springer, New York (2013)

    Book  MATH  Google Scholar 

  7. Chae, D., Degond, P., Liu, J.G.: Well-posedness for Hall-magnetohydrodynamics. Ann. Inst. Henri Poincare-Anal. Nonlineaire 31(3), 555–565 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chae, D., Lee, J.: On the blow-up criterion and small data global existence for the Hall-magnetohydrodynamics. J. Differ. Equ. 256(11), 3835–3858 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chae, D., Schonbek, M.: On the temporal decay for the Hall-magnetohydrodynamic equations. J. Differ. Equ. 255(11), 3971–3982 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chae, D., Wolf, J.: On partial regularity for the steady Hall magnetohydrodynamics system. Commun. Math. Phys. 339(3), 1147–1166 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chae, D., Wolf, J.: On partial regularity for the 3D nonstationary Hall magnetohydrodynamics equations on the plane. SIAM J. Math. Anal. 48(1), 443–469 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chuvatin, A.S., Etlicher, B.: Experimental observation of a wedge-shaped density shock in a plasma opening switch. Phys. Rev. Lett. 74(15), 2965–2968 (1995)

    Article  Google Scholar 

  13. Dai, M.: Regularity criterion for the 3D Hall-magneto-hydrodynamics. J. Differ. Equ. 261(1), 573–591 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Galdi, G.P.: An introduction to the mathematical theory of the Navier–Stokes equations. Steady-State Problems. Springer Monographs in Mathematics, 2nd edn. Springer, New York (2011)

    MATH  Google Scholar 

  15. Homann, H., Grauer, R.: Bifurcation analysis of magnetic reconnection in Hall-MHD systems. Physica D 208(1–2), 59–72 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Huba, J.D., Grossmann, J.M., Ottinger, P.F.: Hall magnetohydrodynamic modeling of a long-conduction-time plasma opening switch. Phys. Plasmas 1(10), 3444–3454 (1994)

    Article  Google Scholar 

  17. Huba, J.D., Lyon, J.G., Hassam, A.B.: Theory and simulation of the Rayleigh–Taylor instability in the limit of large Larmor radius. Phys. Rev. Lett. 59(26), 2971–2974 (1987)

    Article  Google Scholar 

  18. Lighthill, M.J.: Studies on magneto-hydrodynamic waves and other anisotropic wave motions. Philos. Trans. R. Soc. Lond. Ser. A 252(1014), 397–430 (1960)

    MathSciNet  MATH  Google Scholar 

  19. Mininni, P.D., Alexakis, A., Pouquet, A.: Energy transfer in Hall-MHD turbulence: cascades, backscatter and dynamo action. J. Plasma Phys. 73(3), 377–401 (2007)

    Article  Google Scholar 

  20. Ohsaki, S.: Hall effect on relaxation process of flowing plasmas. Phys. Plasmas 12(3), Art. no. 032306 (2005)

  21. Picard, R.: An elementary proof for a compact imbedding result in generalized electromagnetic theory. Math. Z. 187(2), 151–164 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ripin, B.H., Huba, J.D., McLean, E.A., Manka, C.K., Peyser, T., Burris, H.R., Grun, J.: Sub-Alfvénic plasma expansion. Phys. Fluids B 5(10), 3491–3506 (1993)

    Article  Google Scholar 

  23. Troianiello, G.M.: Elliptic Differential Equations and Obstacle Problems. The University Series in Mathematics. Plenum Press, New York (1987)

    Book  MATH  Google Scholar 

  24. Wan, R., Zhou, Y.: On global existence, energy decay and blow-up criteria for the Hall-MHD system. J. Differ. Equ. 259(11), 5982–6008 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Weng, S.: On analyticity and temporal decay rates of solutions to the viscous resistive Hall-MHD system. J. Differ. Equ. 260(8), 6504–6524 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Weng, S.: Space-time decay estimates for the incompressible viscous resistive MHD and Hall-MHD equations. J. Funct. Anal. 270(6), 2168–2187 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yin, H.M.: Regularity of weak solution to Maxwell’s equations and applications to microwave heating. J. Differ. Equ. 200(1), 137–161 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zeng, Y.: Steady states of Hall-MHD system. J. Math. Anal. Appl. 451(2), 757–793 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to their supervisor, Prof. Xingbin Pan, for guidance and constant encouragement. The referee is thanked for valuable comments and suggestions that have improved the manuscript. This work was partially supported by the National Natural Science Foundation of China Grant Nos. 11671143 and 11901003. Zeng was partially supported by the Natural Science Foundation of Chongqing Grant No. cstc2019jcyj-msxmX0214, the Science and Technology Research Program of Chongqing Municipal Education Commission Grant No. KJQN201800841, the Research Program of CTBU Grant No. 1952042 and the Program for the Introduction of High-Level Talents of CTBU Grant No. 1856013. Zhang was also supported by Anhui Provincial Natural Science Foundation Grant No. 1908085QA28.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhibing Zhang.

Additional information

Communicated by J. Ball.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Y., Zhang, Z. Existence, regularity and uniqueness of weak solutions with bounded magnetic fields to the steady Hall-MHD system. Calc. Var. 59, 84 (2020). https://doi.org/10.1007/s00526-020-01745-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-020-01745-1

Mathematics Subject Classification

Navigation